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Abstract

This paper describes the University of Helsinki
Language Technology group’s participation in
the IWSLT 2020 offline speech translation
task, addressing the translation of English au-
dio into German text. In line with this year’s
task objective, we train both cascade and end-
to-end systems for spoken language transla-
tion. We opt for an end-to-end multitasking ar-
chitecture with shared internal representations
and a cascade approach that follows a stan-
dard procedure consisting of ASR, correction,
and MT stages. We also describe the exper-
iments that served as a basis for the submit-
ted systems. Our experiments reveal that mul-
titasking training with shared internal repre-
sentations is not only possible but allows for
knowledge-transfer across modalities.

1 Introduction

An effective solution for performing spoken lan-
guage translation (SLT) must deal with the evident
challenge of transferring the implicit semantics be-
tween audio and text modalities. An end-to-end
SLT system must hence appropriately address this
problem while simultaneously performing accurate
machine translation (MT) (Sulubacak et al., 2018).

In last year’s IWSLT challenge, both end-to-
end and cascade systems yielded similar results
(Niehues et al., 2019). It follows that this year’s
IWSLT offline speech translation challenge focuses
on whether ”the cascaded solution is still the dom-
inant technology in spoken language translation”
(Ansari et al., 2020). For our participation on this
task, we train both cascade and end-to-end sys-
tems for SLT. For the end-to-end system, we use a
multimodal approach trained in a multitask fashion,
which maps the internal representations of different
encoders into a shared space before decoding. For
the cascade approach, we use a pipeline of three
stages: (i) automatic speech recognition (ASR),

(ii) punctuation and letter-case restoration, and (iii)
MT.

We focus on exploiting the knowledge-transfer
capabilities of a multitasking architecture based
on language-specific encoders-decoders (Lu et al.,
2018; Schwenk and Douze, 2017; Luong et al.,
2016). This idea has been proposed and studied
in the multilingual scenario (Vázquez et al., 2020;
Subramanian et al., 2018; Firat et al., 2017), how-
ever, we adapt it to be used in a multimodal sce-
nario. Regarding different modalities (in this case,
audio and text) as different languages when train-
ing the model, allows us to employ a cross-modal
intermediate shared layer for performing SLT in an
end-to-end fashion. By jointly training this layer,
we aim for the the model to combine the semantic
information provided in the text-to-text MT tasks
with the ability to generate text from audio in the
ASR tasks.

2 Proposed Systems

End-to-end SLT

We use an inner-attention based architecture pro-
posed by Vázquez et al. (2020). In a nutshell, it
follows the conventional structure of an encoder-
decoder model of MT (Bahdanau et al., 2015; Lu-
ong et al., 2016) enabled with multilingual train-
ing by incorporating language-specific encoders
and decoders trainable with a language-rotating
scheduler (Dong et al., 2015; Schwenk and Douze,
2017), and an intermediate shared inner-attention
layer (Cı́fka and Bojar, 2018; Lu et al., 2018). We
implement our model on top of an OpenNMT-py
(Klein et al., 2017) fork, which we make available
for reproducibility purposes.1

The text encoders and the decoders (always text
output) are transformers (Vaswani et al., 2017).

1https://github.com/Helsinki-NLP/
OpenNMT-py/tree/iwslt2020

https://github.com/Helsinki-NLP/OpenNMT-py/tree/iwslt2020
https://github.com/Helsinki-NLP/OpenNMT-py/tree/iwslt2020
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We implement the transformer-based audio en-
coders inspired by the SLT architecture with tied
layer structure from Tu et al. (2019) and the R-
Transformer from Di Gangi et al. (2019b). It con-
sists of n CNN layers; the first one taking k stacked
Mel filterbank features as input channels, and the
following ones 32 input channels. Afterwards, a
linear layer corrects the shape of the embeddings
and is concatenated with the positional embeddings
to be fed as input to m transformer layers.

Given the multimodal nature of the task, we mod-
ified the source-target rotating scheduler. Instead of
a uniform distribution over the language pairs, we
propose using a weighted sampling scheme based
on the inverse of the batch size of the modalities.
This modification allows us to have a more bal-
anced training because audio inputs tend to be con-
siderably longer than text inputs, and a transformer-
based encoder could not possibly handle the 4096
tokens conventionally used as the ad-hoc choice of
batch size for a text-based transformer.

Cascade approach

The ASR stage of our pipeline is trained with an S-
Transformer (Di Gangi et al., 2019b); an adaptation
of the transformer architecture to end-to-end SLT.
The encoder in this architecture makes it possible
to process audio features. It consists of two 2-
dimensional CNN-blocks meant to downsample the
input, followed by two 2-dimensional self-attention
layers to model the long-range context, an attention
layer that concatenates its output with the positional
encodings of the input, and six transformer-based
layers.

The output of the ASR stage is followed by the
restoration stage for punctuation and letter case
restoration. Since the training data for the ASR
model mixes different training sets with different
formatting, the raw output from the ASR block can
have stylistic differences from the input seen during
the training of the translation stage. The restoration
stage involves the use of an auxiliary transformer-
based MT model to perform “intralingual transla-
tion” from lowercased text without punctuation into
fully-cased and punctuated text. Stripping punc-
tuation on the ASR output, converting the text to
lowercase, and processing the result through the
restoration stage ensures that the output conforms
to the same format that the translation stage was
optimized for.

As the last step, the translation stage uses an-

other transformer to translate the processed ASR
output to German. Both this transformer model
and the one used in the restoration stage are based
on the freely available Marian NMT implementa-
tion (Junczys-Dowmunt et al., 2018). Our config-
uration uses a learning rate of 0.0003 with linear
warmup through the first 16 000 batches, decay-
ing afterwards. The decoder normalizes scores by
translation length (normalization exponent of 1.0)
during beam search. All other options use the de-
fault values.

3 Data Preprocessing

The MT, ASR and end-to-end SLT systems have
been trained on different subsets of the allowed
training corpora. For the cascade approach SLT
system

Corpora # utterances Length

Europarl-ST 40,141 89 hrs
IWSLT2018 166,214 271 hrs
How2 189,366 297 hrs
MuST-C 264,036 400 hrs
Mozilla

854,430 1,118 hrs
Common Voice

Table 1: Size of audio data used.

Data for the end-to-end SLT system. We use
Europarl-ST (Iranzo-Sánchez et al.), IWSLT2018
(Niehues et al., 2019) and MuST-C (Di Gangi et al.,
2019a), a total of 433k utterances after cleaning
some corrupt files or with other problems in the
sampling. We extracted 80-dimensional Mel filter-
bank features for each sentence-like segment using
our own implementation.

Text data for the end-to-end SLT system. For
the text data of the multimodal end-to-end SLT
system, we use a total of ∼51M sentence pairs
from corpora specified in Table 2. Instead of using
all of this data, we first filter out noisy translations.
OpenSubtitles2018, which consists of subtitle trans-
lations, and corpora gathered by crawling the inter-
net, Common Crawl and ParaCrawl, are especially
likely to contain noisy data. For filtering the cor-
pora, we utilize OpusFilter (Aulamo et al., 2020),
a toolbox for creating clean parallel corpora.

First, we extract six feature values for each of
the sentence pairs. In particular, we apply the fol-
lowing features: CharacterScore, CrossEntropy,
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LanguageID, NonZeroNumeral, TerminalPunctu-
ation and WordAlign, each of which is defined
in Aulamo et al. (2020). Secondly, we train a lo-
gistic regression classifier based on those features.
The classifier is trained only on WIT3, MuST-C,
Europarl-ST and IWSLT18, which are multimodal
datasets with speech-to-text and text-to-text data.
This allows the system to adapt to text translations
that are associated with speech translations. Fi-
nally, we use the classifier to assign a cleanness
score ranging from 0 to 1 for all sentence pairs in
all corpora. The data is then ranked based on the
cleanness score, after which a portion of noisy pairs
is removed from the tail. Our preliminary transla-
tion experiments showed that removing up to 40%
of the data improves the translation quality, leaving
us ∼30.5M sentence pairs of training data, which
are then used in all our end-to-end experiments.

Corpora # sentences

WIT3 196,112
MuST-C train 229,703
Rapid 2019 1,480,789
Europarl v9 1,817,763
OpenSubtitles2018 11,621,073
News Commentary v14 365,340
Common Crawl 2,399,123
Europarl-ST 32,628
WikiTitles 1,305,078
IWSLT2018 171,025
ParaCrawl v3 31,360,203
Total 50,978,837
Filtered 30,540,267

Table 2: Text training data used for end-to-end sys-
tems.

Audio for the cascade system. We have ex-
tracted 40-dimensional Filterbank features with
speaker normalization for each sentence-like
segment of the MuST-C, How2 (Sanabria et al.,
2018) and Mozilla Common Voice (Ardila et al.,
2019) corpora using XNMT (Neubig et al., 2018).
After getting rid of audio files that were too short
(less than 0.4 seconds), corrupted, or no longer
available for download from YouTube, some 1.2M
clean utterances remained for training the ASR
system, and 30k for validation.

On the target side, we use two contrastive pre-
processing pipelines:

i) the same subword segmentation used for the
MT system
_it _& apos ; s _a _lobster _made

_of _play d ough _that _& apos ; s

_afraid _of _the _dark _.

ii) character level segmentation
I t <space> ’ s <space> a <space>
l o b s t e r <space> m a d e <space>
o f <space> p l a y d o u g h <space>
t h a t <space> ’ s <space> a f r a i d
<space> o f <space> t h e <space>
d a r k <space> .

Text data for the cascade system. In our SLT
pipeline, the data we applied for our restoration and
translation models have some overlap and some
differences. For training, both models use the
text data from the IWSLT 2018 speech translation
corpus, the MuST-C training set, News Commen-
tary v14, Europarl v9, and Rapid 2019. The trans-
lation model also uses data from the OpenSubti-
tles2018 dataset, which the restoration model does
not since this dataset is particularly noisy in terms
of punctuation and letter cases. Conversely, the
restoration model also uses data from the How2 and
Mozilla Common Voice datasets, which the transla-
tion model does not use as they do not contain Ger-
man text. The translation model uses the IWSLT
development set from 2010 and test sets from 2011–
2015 as validation data, while the restoration model
uses them as supplementary training data in order
to reinforce domain bias, using only the MuST-C
development set for validation.

Initially, we “clean” the output of our ASR
model to remove segments containing musical note
characters (� �), and repeating phrases that were
consistently hallucinated during silence, applause,
laughter or noise in the audio (e.g. in our case,
“Shake. Fold.”), as well as parts of segments that
designate the speaker (e.g. “Audience: ...”). Sub-
sequently, we use the same preprocessing pipeline
for the cleaned ASR output as we do for all of
our text data. For this, we start by removing non-
printing characters, normalizing punctuation, and
retokenizing the text using the corresponding util-
ities from the Moses toolkit (Koehn et al., 2007).
Afterwards, we apply subword segmentation via
SentencePiece (Kudo and Richardson, 2018), using
a joint English–German BPE model with a vocabu-
lary size of 32 000 for all of our translation models,
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Figure 1: Configurations tested for multitask training.

and an English unigram model with a vocabulary
size of 24 000 for the restoration stage of our cas-
cade SLT, both trained on all of the data used for
the translation and restoration models combined.

Before the training of the restoration model, the
training data was run through a Moses truecaser
model (trained on the same selection of training
data as the restoration model) as an additional step
before segmentation. This step removes sentence-
initial capitalization for words that would not be
capitalized otherwise, ensuring that differences in
distributions of words appearing in sentence-initial
positions does not influence case restoration for the
model. Once truecased and segmented, we assign
the processed data as the target for the restoration
model, and continue to strip punctuation and low-
ercase the target to generate the source. This con-
figuration comes with the useful side effect of the
model learning to generate truecased output, which
may be beneficial for MT.

4 Experiments

In this section we report on the experiments that
lead up to our final submissions. The experi-
ments on this section have been trained, validated
and tested on the respective splits of the MuST-C
dataset.

As a first stage, we focused on selecting the mul-
titask training strategy that performed better. Hav-
ing the three modalities ENAUDIO, ENTEXT and
DETEXT as possible inputs, and both text modal-
ities as possible outputs, there can be up to 64
combinations where audio is an input2 without tak-
ing into account the cases where the text encoder
is shared between German and English. We con-
sidered the 5 scenarios depicted in Figure 1 and
present its results in Table 3 together with the num-
ber of steps it took for them to converge.

All the models were trained using the same set
of hyperparameters. At the time we ran these ex-
periments, the final version of the audio encoder
was not ready for deployment, so we used a 4-

264 is the total number of bipartite graphs that can be
defined on sets of three and two vertices.

layered pyramidal CNN+RNN encoder adaptation
from Amodei et al. (2016) with 512 hidden units
and pooling factors of (1,1,2,2) after each layer,
respectively. For the text encoders, we applied em-
bedding layers of 512 dimensions, four stacked
bidirectional LSTM layers with 512 hidden units
(256 per direction). We use attentive text decoders
composed of two unidirectional LSTM layers with
512 units. Regarding the shared attention bridge
layer, we used 100 attention heads with 1024 hid-
den units each. Training is performed using the
Adam optimizer (Kingma and Ba, 2015) with a
learning rate of 0.0002 and batch size 32 for all
source-target pairs, for at most 100,000 steps per
language pair3. At this stage, we apply a uniform
language-rotating scheduler. Isolating the effect
of multitasking from the effect of weighting the
scheduling distribution helped us understand the
importance of weighting it with respect to the batch
size.

Configuration BLEU Steps

opt3 5.00 330K
opt5shareEnc 4.94 250K
opt2shareEnc 4.84 250K
opt4 4.50 300K
opt1 4.30 220K
opt2 3.62 190K

Table 3: Training steps and best BLEU scores ob-
tained with end-to-end systems on the German part fo
the MuST-C test set.

Our preliminary BLEU scores4 for these mod-
els are low. We, however, justify our choice to
include them given the low performance of other
experiments in similar scenarios reported in the
literature. Namely, Tu et al. (2019) reported 9.55
BLEU training on the same set with a transformer
based architecture, the only paper that trains and
tests on the same set, and thus the only truly com-

3Model configuration 3, for instance, has 4 language pairs
was trained for at most 400K steps

4We use the multi-bleu-detok.pl+ Moses script,
that uses sentence smoothing for detokenized input.
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System status de BLEU en BLEU WER Steps

end-to-end opt6
submission time 12.90 56.65 36 172K
converged 14.38 59.22 33 294K

end-to-end opt3
submission time 9.47 44.12 48 32K
converged 11.71 52.91 40 72K

cascade bpe37k 22.20 60.87 29 -
cascade char-level 20.90 54.49 55 -

Table 4: Scores of our primary and contrastive submissions on on the MuST-C test set.

parable results. In addition, Di Gangi et al. (2019a)
reported 12.25 BLEU training MuST-C together
with IWSLT18 and initialized their system with the
ASR system.

The well-known sensitivity to hyperperparam-
eter choice of the transformer architecture is also
visible in our transformer-based audio encoders.
We performed hyperparameter tuning on opt3 mul-
titask training configuration (Figure 1 (d)). This
resulted in a performance of a 9.53 BLEU score
on German translations and 47.63 on the English,
a clear increase from the untuned models that got
at most 1 BLEU point in any of them. The final
hyperparameter setup consists of:

• text encoders and decoders using 3 layered
transformer architecture with 8 heads, 512
dimensional embeddings, 2048 feedforward
hidden dimensions, and a batch size of 4096
tokens;

• audio encoders as described in Section 2 with
2 CNN layers with stride of 2 and kernel width
of, the first of which takes a single input chan-
nel, three 8-headed transformer layers, posi-
tional embeddings of size 512 concatenated
to the output of a linear layer for being passed
to the transformer layers, a batch size of 32
utterances; and

• an attention bridge of size 100 with a hidden
dimension of 1024.

Training was done with 8,000 warmup steps, using
an Adam optimizer with learning rate 2 and Noam
decay method, accumulation count of 8 to have
an approximate effective batch size of 256 for the
audio utterances, dropping utterances above the
length of 5500, and a language rotating scheduler
that uses the inverse of the batch size as weights 5.

5In case of training opt3, the weights assigned to ENAU-

We also tried other strategies such as (i) using 3,
4 and 6 stacked filterbanks as different channel in-
puts for the CNNs to reduce the input size instead
of dropping utterances, (ii) using SpecAugment
(Park et al., 2019) layers (2 frequency masks of
width 20 and 2 time masks of width 50) to pro-
duce a data augmentation effect while training, (iii)
including layer normalization after the attention
bridge, (iv) using the positional embeddings of our
transformer-based audio encoder in other places
of the encoder or not using them at all. Unfortu-
nately, none of them produced as effective improve-
ments as what we describe above. We note that it
is probable that using milder hyperparameters for
SpecAugment could be beneficial.

5 Results

From the insights gained out of our experiments
on the MuST-C dataset, for our submission, we
train a system using the data as described in section
3 with the training configuration opt3 (see Figure
1 (d)) and the hyperparameters that yielded the best
results. Further, we decided to try out an addi-
tional training configuration we had not previously
tried out: ENAUDIO as input and DETEXT and
ENTEXT as output, which we refer to as opt6. Con-
figurations from Figure 1 use both modalities as
input, whereas opt6 separates them by using only-
audio input and only-text output. This might be the
reason why opt6 outperformed them when tested
on the MuST-C test set. Further experimentation
would be required to make this statement conclu-
sive. One of our main aims in participating in this
task is to test our multitask architecture; for this
reason we submit our best SLT system as primary
system and the cascade approach with subword seg-
mentation as contrastive baseline. We would like to
DIO → {DETEXT,ENTEXT} are 0.42 each and both text-to-
text pairs get 0.08 because the average sentence length of
MuST-C is around 24, which implies that 4096 tokens are
about 170 sentences.
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note that, unfortunately, at the time of submission,
our end-to-end systems had not converged yet.

For the sake of consistency, these have been
benchmarked with the MuST-C test set as well.
The results are reported in Table 4, where we also
report BLEU and WER for English, corresponding
to the ASR task.

6 Conclusion

In this paper we present our work for the
IWSLT2020 offline speech translation task, along
with the set of experiments that led to our final
systems. Our submission includes both a cascaded
baseline and a multimodal system trainable in a
multitask fashion. Our work shows that it is pos-
sible to train a system that shares internal repre-
sentations for transferring the implicit semantics
between audio and text modalities. The nature of
the architecture enables end-to-end SLT, while at
the same time providing a system capable of per-
forming ASR and MT. Although this represents
an important step in multimodal MT, there is still
a lot of room for improvement in the proposed
systems. In future work, we would like to imple-
ment more sophisticated audio encoders, such as
the S-Transformer. This, along with using the same
amount of data during training, will allow us to
draw a truly fair comparison between both end-to-
end and cascade approaches.
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