
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 8519–8526,
November 16–20, 2020. c©2020 Association for Computational Linguistics

8519

Learning to Ignore: Long Document Coreference
with Bounded Memory Neural Networks

Shubham Toshniwal1, Sam Wiseman1, Allyson Ettinger2, Karen Livescu1, Kevin Gimpel1

1Toyota Technological Institute at Chicago
2Department of Linguistics, University of Chicago

{shtoshni, swiseman, klivescu, kgimpel}@ttic.edu, aettinger@uchicago.edu

Abstract

Long document coreference resolution re-
mains a challenging task due to the large mem-
ory and runtime requirements of current mod-
els. Recent work doing incremental corefer-
ence resolution using just the global repre-
sentation of entities shows practical benefits
but requires keeping all entities in memory,
which can be impractical for long documents.
We argue that keeping all entities in memory
is unnecessary, and we propose a memory-
augmented neural network that tracks only a
small bounded number of entities at a time,
thus guaranteeing a linear runtime in length of
document. We show that (a) the model remains
competitive with models with high memory
and computational requirements on OntoNotes
and LitBank, and (b) the model learns an effi-
cient memory management strategy easily out-
performing a rule-based strategy.

1 Introduction

Long document coreference resolution poses run-
time and memory challenges. Current best models
for coreference resolution have large memory re-
quirements and quadratic runtime in the document
length (Joshi et al., 2019; Wu et al., 2020), making
them impractical for long documents.

Recent work revisiting the entity-mention
paradigm (Luo et al., 2004; Webster and Curran,
2014), which seeks to maintain explicit represen-
tations only of entities, rather than all their con-
stituent mentions, has shown practical benefits for
memory while being competitive with state-of-the-
art models (Xia et al., 2020). In particular, unlike
other approaches to coreference resolution which
maintain representations of both mentions and their
corresponding entity clusters (Rahman and Ng,
2011; Stoyanov and Eisner, 2012; Clark and Man-
ning, 2015; Wiseman et al., 2016; Lee et al., 2018) ,
the entity-mention paradigm stores representations

only of the entity clusters, which are updated in-
crementally as coreference predictions are made.
While such an approach requires less memory than
those that additionally store mention representa-
tions, the number of entities can still become im-
practically large when processing long documents,
making the storing of all entity representations
problematic.

Is it necessary to maintain an unbounded number
of mentions or entities? Psycholinguistic evidence
suggests it is not, as human language processing is
incremental (Tanenhaus et al., 1995; Keller, 2010)
and has limited working memory (Baddeley, 1986).
In practice, we find that most entities have a small
spread (number of tokens from first to last mention
of an entity), and thus do not need to be kept per-
sistently in memory. This observation suggests that
tracking a limited, small number of entities at any
time can resolve the computational issues, albeit at
a potential accuracy tradeoff.

Previous work on finite memory models for
coreference resolution has shown potential, but has
been tested only on short documents (Liu et al.,
2019; Toshniwal et al., 2020). Moreover, this pre-
vious work makes token-level predictions while
standard coreference datasets have span-level an-
notations. We propose a finite memory model
that performs quasi-online coreference resolution,1

and test it on LitBank (Bamman et al., 2020) and
OntoNotes (Pradhan et al., 2012). The model is
trained to manage its limited memory by predicting
whether to “forget" an entity already being tracked
in exchange for a new (currently untracked) entity.
Our empirical results show that: (a) the model is
competitive with an unbounded memory version,
and (b) the model’s learned memory management
outperforms a strong rule-based baseline.2

1“Quasi-online” because document encoding uses bi-
directional transformers with access to future tokens.

2Code at https://github.com/shtoshni92/

https://github.com/shtoshni92/long-doc-coref

8520

Table 1: Max. Total Entity Count vs. Max. Active En-
tity Count.

LitBank OntoNotes

Max. Total Entity Count 199 94
Max. Active Entity Count 18 24

2 Entity Spread and Active Entities

Given input documentD, let (xn)Nn=1 represent the
N mention spans corresponding to M underlying
entities (em)Mm=1. Let START(xi) and END(xi)
denote the start and end token indices of the men-
tion span xi in document D. Let ENT(xi) denote
the entity of which xi is a mention. Given this no-
tation we next define the following concepts.

Entity Spread Entity spread denotes the interval
of token indices from the first mention to the last
mention of an entity. The entity spread ES(e) of
entity e is given by:

ES(e) = [min
ENT(x)=e

START(x), max
ENT(x)=e

END(x)]

Active Entity Count Active entity count AE(t)
at token index t denotes the number of unique enti-
ties whose spread covers the token t, i.e., AE(t) =
|{e | t ∈ ES(e)}|.

Maximum Active Entity Count Maximum ac-
tive entity count MAE(D) for a document D
denotes the maximum number of active enti-
ties at any token index in D, i.e., MAE(D) =
maxt∈[|D|] AE(t). This measure can be sim-
ply extended to a corpus C as: MAE(C) =
maxD∈CMAE(D).

Table 1 shows the MAE and the maximum total
entity count in a single document, for LitBank and
OntoNotes. For both datasets the maximum active
entity count is much smaller than the maximum to-
tal entity count. Thus, rather than keeping all the
entities in memory at all times, models can in prin-
ciple simply focus on the far fewer active entities
at any given time.

3 Model

Based on the preceding finding, we will next de-
scribe models that require tracking only a small,
bounded number of entities at any time.

To make coreference predictions for a document,
we first encode the document and propose candi-

long-doc-coref

date mentions. The proposed mentions are then pro-
cessed sequentially and are either: (a) added to an
existing entity cluster, (b) added to a new cluster,
(c) ignored due to limited memory capacity (for
bounded memory models), or (d) ignored as an in-
valid mention.

Document Encoding is done using the
SpanBERTLARGE model finetuned for OntoNotes
and released as part of the coreference model of
Joshi et al. (2020). We don’t further finetune the
SpanBERT model. To encode long documents,
we segment the document using the independent
and overlap strategies described in Joshi et al.
(2019).3 In overlap segmentation, for a token
present in overlapping BERT windows, the token’s
representation is taken from the BERT window
with the most neighboring tokens of the concerned
token. For both datasets we find that overlap
slightly outperforms independent.

Mention Proposal Given the encoded document,
we next predict the top-scoring mentions which are
to be clustered. The goal of this step is to have
high recall, and we follow previous work to thresh-
old the number of spans chosen (Lee et al., 2017).
Given a documentD, we choose 0.3×|D| top spans
for LitBank, and 0.4× |D| for OntoNotes.

Note that we pretrain the mention proposal
model before training the mention proposal and
mention clustering pipeline end-to-end, as done
by Wu et al. (2020). The reason is that without
pretraining, most of the mentions proposed by the
mention proposal model would be invalid mentions,
i.e., spans that are not mentions, which would not
provide any training signal to the mention clus-
tering stage. For both datasets, we sample invalid
spans with 0.2 probability during training, so as to
roughly equalize the number of invalid spans and
actual mentions, as suggested by Xia et al. (2020).

Mention Clustering Let (xi)Ki=1 represent the
top-K candidate mention spans from the mention
proposal step and let sm(xi) represent the mention
score for span xi, which indicates how likely it is
that a span constitutes a mention. Assume that the
mentions are already ordered based on their posi-
tion in the document and are processed sequentially
in that order.4 Let E = (em)Mm=1 represent the M

3We modify the overlap segmentation to respect sentence
boundary or token boundary when possible.

4Specifically, they are ordered based on START(·) index
with ties broken using END(·).

https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref
https://github.com/shtoshni92/long-doc-coref

8521

entities currently being tracked by the model (ini-
tially M = 0). For ease of discussion, we will over-
load the terms xi and ej to also correspond to their
respective representations.

In the first step, the model decides whether the
span xi refers to any of the entities in E as follows:

sc(xi, ej)=fc([xi; ej ;xi � ej ; g(xi, ej)])+sm(xi)

stopc = max
j=1...M

sc(xi, ej)

etop=argmax
j=1...M

sc(xi, ej)

where � represents the element-wise product, and
fc(·) corresponds to a learned feedforward neural
network. The term g(xi, ej) correponds to a con-
catenation of feature embeddings that includes em-
beddings for (a) number of mentions in ej , (b) num-
ber of mentions between xi and last mention of ej ,
(c) last mention decision, and (d) document genre
(only for OntoNotes).

Now if stopc > 0 then xi is considered to refer to
etop , and etop is updated accordingly.5 Otherwise,
xi does not refer to any entity in E and a second
step is executed, which will depend on the choice
of memory architecture. We test three memory ar-
chitectures, described below.

1. Unbounded Memory (U-MEM): If sm(xi) >
0 then we create a new entity eM+1 = xi and ap-
pend it to E. Otherwise the mention is ignored as
invalid, i.e., it doesn’t correspond to an entity. This
differs from Xia et al. (2020) who append all non-
coreferent mentions. The reason for the change is
that appending all mentions can hurt performance
on LitBank where singletons are explicitly marked
and used for evaluation.

2. Bounded Memory: Suppose the model has a
capacity of tracking C entities at a time. If C > M ,
i.e., the memory capacity has not been fully uti-
lized, then the model behaves like U-MEM. Other-
wise, the bounded memory models must decide be-
tween: (a) evicting an entity already being tracked,
(b) ignoring xi due to limited capacity, and (c) ig-
noring the mention as invalid. We test two bounded
memory variants that are described below.

(a) Learned Bounded Memory (LB-MEM):
The proposed LB-MEM architecture tries to pre-
dict a score fr(.) corresponding to the anticipated
number of remaining mentions for any entity or

5We use weighted averaging where the weight for etop

corresponds to the number of previous mentions seen for etop .

Table 2: Results for LitBank (CoNLL F1).

Model Dev F1 Test F1

U-MEM 76.5 75.9
LB-MEM

5 cells 70.6 69.5
10 cells 75.4 74.9
20 cells 76.3 75.7

RB-MEM
5 cells 67.5 66.7
10 cells 72.2 71.8
20 cells 73.1 72.6

Bamman et al. (2020) - 68.1

mention, and compares it against the mention score
sm(xi) as follows:

d = argmin[fr(e1), . . . , fr(eM), fr(xi), sm(xi)]

where fr(·) is a learned feedforward neural net-
work. If 1 ≤ d ≤ M then then the model evicts
the previous entity ed and reinitialize it to xi. Oth-
erwise if d = M +1 then the model ignores xi due
to limited capacity. Finally if d = M + 2 then the
model predicts the mention to be invalid.
(b) Rule-based Bounded Memory (RB-MEM)
The Least Recently Used (LRU) principle is a popu-
lar choice among memory models (Rae et al., 2016;
Santoro et al., 2016). While LB-MEM considers all
potential entities for eviction, with RB-MEM this
choice is restricted to just the LRU entity, i.e., the
entity whose mention was least recently seen. The
rest of the steps are similar to the LB-MEM model.

Training All the models are trained using
teacher forcing. The ground truth decisions for
bounded memory models are chosen to maximize
the number of mentions tracked by the model (de-
tails in Appendix A.3). Finally, the training loss
is calculated via the addition of the cross-entropy
losses for the two steps of mention clustering.

4 Experimental Setup

4.1 Datasets

LitBank is a recent coreference dataset for literary
texts (Bamman et al., 2020). The dataset consists
of prefixes of 100 novels with an average length of
2100 words. Singletons are marked and used for
evaluation. Evaluation is done via 10-fold cross-
validation over 80/10/10 splits.6

6https://github.com/dbamman/
lrec2020-coref/tree/master/data

https://github.com/dbamman/lrec2020-coref/tree/master/data
https://github.com/dbamman/lrec2020-coref/tree/master/data

8522

Table 3: Results for OntoNotes (CoNLL F1) .

Model Dev F1 Test F1

U-MEM 77.7 77.4
LB-MEM

5 cells 73.1 73.0
10 cells 76.6 76.2
20 cells 77.7 77.3

RB-MEM
5 cells 69.0 68.8
10 cells 75.2 75.0
20 cells 77.5 77.5

U-MEM (Xia et al., 2020) 78.7 78.2

Joshi et al. (2020) 80.1 79.6
Wu et al. (2020) 83.4 83.1

OntoNotes consists of 2802/343/348 documents
in the train/development/test splits, respectively
(Pradhan et al., 2012). The documents span 7 gen-
res and have an average length of 463 words. Sin-
gletons are not marked in the dataset.

4.2 Hyperparameters

Document encoding is done using the
SpanBERTLARGE model of Joshi et al. (2020)
which was finetuned for OntoNotes. The Span-
BERT model is not further finetuned. The other
model parameters are trained using the Adam
optimizer (Kingma and Ba, 2014) with an initial
learning rate of 5× 10−4. For span representation,
we use the embedding function described in Lee
et al. (2017). For OntoNotes we follow the setup
of Xia et al. (2020). We differ, however, in training
all the model parameters, except SpanBERT, from
scratch. The models are trained for 10 epochs with
a patience of 3 epochs, i.e., reduce learning rate by
a 0.1 factor if the validation loss doesn’t improve
for 3 epochs. For LitBank the models are trained
for 25 epochs with a patience of 3 epochs. For
more details see Appendix A.2.

5 Results

Tables 2 and 3 show results of all the proposed
models for LitBank and OntoNotes respectively.
As expected, the bounded memory models improve
with increase in memory. For both datasets, the
LB-MEM model with 20 memory cells is competi-
tive with the U-MEM model. The RB-MEM model
with 20 memory cells is competitive on OntoNotes
but is significantly worse than the other two on
LitBank. Comparing among the bounded memory
models, the LB-MEM model is significantly better
than RB-MEM for lower numbers of memory cells.

Table 4: Peak memory and inference time statistics for
the LitBank cross-validation split zero.

Model Peak training Peak inference Inference
mem. (in GB) mem. (in GB) time (in s)

U-MEM 11.6 3.1 29.25
LB-MEM

5 cells 8.0 3.2 27.31
10 cells 8.4 3.2 27.44
20 cells 9.1 3.2 27.86

RB-MEM
5 cells 8.0 3.2 26.19
10 cells 8.3 3.2 26.50
20 cells 8.9 3.2 26.19

Table 5: Comparison of number of entities in memory.

Model LitBank OntoNotes
Avg Max Avg Max

U-MEM 97.0 198 16.3 87
LB-MEM

5 cells 5.0 5 4.6 5
10 cells 10.0 10 8.1 10
20 cells 20.0 20 12.4 20

RB-MEM
5 cells 5.0 5 4.6 5
10 cells 10.0 10 8.1 10
20 cells 20.0 20 12.4 20

We analyze the reasons for this in the next section.
Between the two datasets, we see that the in-

crease in memory results in larger improvement
for LitBank. We also establish a new state-of-the-
art for LitBank with the U-MEM memory model.
For OntoNotes, our models are competitive with
comparable models such as Xia et al. (2020). The
performance difference between the two U-MEM
models might be because we try to predict invalid
mentions which, while beneficial for LitBank, can
lead to lower mention recall for OntoNotes. We
expect gains by further finetuning the SpanBERT
model and learning a parameterized global entity
representation, but we leave them for future work.

6 Analysis

In this section we analyze the behavior of the three
memory models on LitBank and OntoNotes.

Memory Utilization Table 4 compares the mem-
ory and inference time statistics for the different
memory models for the LitBank cross-validation
split zero.7 For training, the bounded memory mod-
els are significantly less memory intensive than
the U-MEM model. The table also shows that the

7Peak memory usage estimated via
torch.cuda.max_memory_allocated()

8523

Table 6: Average number of mentions ignored by the
two bounded memory models.

Memory LitBank OntoNotes
size LB-MEM RB-MEM LB-MEM RB-MEM

5 18.3 83.2 0.5 5.4
10 0.0 34.5 0.0 0.7
20 0.0 7.0 0.0 0.0

bounded memory models are faster than the U-
MEM memory model during inference (inference
time calculated by averaging over three runs). This
is because the number of entities tracked by the U-
MEM memory model grows well beyond the maxi-
mum of 20 memory slots reserved for the bounded
models as shown in Table 5.

Surprisingly, for inference we see that the
bounded models have a slightly larger memory
footprint than the U-MEM model. This is because
the document encoder, SpanBERT, dominates the
memory usage during inference (as also observed
by Xia et al., 2020). Thus the peak memory us-
age during inference is determined by the mention
proposal stage rather than the mention clustering
stage. And during the mention proposal stage, the
additional parameters of bounded memory models,
which are loaded as part of the whole model, cause
the slight uptick in peak inference memory. Note
that using a cheaper encoder or running on a suffi-
ciently long document, such as a book, can change
these results.

Number of Entities in Memory Table 5 com-
pares the maximum number of entities kept in
memory by the different memory models for
the LitBank cross-validation dev sets and the
OntoNotes dev set. As expected, the U-MEM
model keeps more entities in memory than the
bounded memory models on average for both
datasets. For LitBank the difference is especially
stark with the U-MEM model tracking about 5/10
times more entities in memory on average/worst
case, respectively. Also, while some OntoNotes
documents do not use even the full 5 memory cell
capacity, all LitBank documents fully utilize even
the 20 memory cell capacity. This is because Lit-
Bank documents are more than four times as long
as OntoNotes documents, and LitBank has single-
tons marked. These results also justify our initial
motivation that with long documents, the memory
requirement will increase even if we only keep the
entity representations.

Table 7: Error Analysis for OntoNotes dev set.
CE=Conflated Entities, DE=Divided Entity, EM=Extra
Mention, EE=Extra Entity, MM=Missing Mention,
ME=Missing Entity.

Model CE DE EM EE MM ME

U-MEM 950 901 635 621 493 542
LB-MEM

5 cells 722 1020 394 426 982 1058
10 cells 863 988 499 505 637 719
20 cells 894 905 571 542 513 631

RB-MEM
5 cells 724 1166 386 406 989 1335
10 cells 851 1088 474 547 702 749
20 cells 880 903 559 561 531 634

LB-MEM vs. RB-MEM Table 6 compares the
number of mentions ignored by LB-MEM and RB-
MEM. The LB-MEM model ignores far fewer men-
tions than RB-MEM. This is because while the
RB-MEM model can only evict the LRU entity,
which might not be optimal, the LB-MEM model
can choose any entity for eviction. These statistics
combined with the fact that the LB-MEM model
typically outperforms RB-MEM mean that the LB-
MEM model is able to anticipate which entities are
important and which are not.

Error Analysis Table 7 presents the results of
automated error analysis done using the Berke-
ley Coreference Analyzer (Kummerfeld and Klein,
2013) for the OntoNotes dev set. As the memory
capacity of models increases, the errors shift from
missing mention, missing entity, and divided en-
tity categories, to conflated entities, extra mention,
and extra entity categories. For the 5-cell configu-
ration, the LB-MEM model outperforms RB-MEM
in terms of tracking more entities.

7 Conclusion and Future Work

We propose a memory model which tracks a small,
bounded number of entities. The proposed model
guarantees a linear runtime in document length,
and in practice significantly reduces peak memory
usage during training. Empirical results on LitBank
and OntoNotes show that the model is competitive
with an unbounded memory version and outper-
forms a strong rule-based baseline. In particular,
we report state of the art results on LitBank. In
future work we plan to apply our model to longer,
book length documents, and plan to add more struc-
ture to the memory.

8524

Acknowledgments

We thank David Bamman for help with the Lit-
Bank setup, and Patrick Xia for answering ques-
tions about their coreference model. We also thank
the anonymous ACL reviewers for their valuable
feedback. This material is based upon work sup-
ported by the National Science Foundation under
Award Nos. 1941178 and 1941160.

References
Alan Baddeley. 1986. Working Memory. Oxford Uni-

versity Press.

David Bamman, Olivia Lewke, and Anya Mansoor.
2020. An Annotated Dataset of Coreference in En-
glish Literature. In LREC.

Kevin Clark and Christopher D. Manning. 2015.
Entity-Centric Coreference Resolution with Model
Stacking. In ACL.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving Pre-training by Representing
and Predicting Spans. TACL, 8.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019. BERT for Coreference Resolu-
tion: Baselines and Analysis. In EMNLP.

Frank Keller. 2010. Cognitively Plausible Models of
Human Language Processing. In ACL.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In ICLR.

Jonathan K. Kummerfeld and Dan Klein. 2013. Error-
Driven Analysis of Challenges in Coreference Reso-
lution. In EMNLP.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end Neural Coreference Reso-
lution. In EMNLP.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-Order Coreference Resolution with Coarse-
to-Fine Inference. In NAACL-HLT.

Fei Liu, Luke Zettlemoyer, and Jacob Eisenstein. 2019.
The Referential Reader: A Recurrent Entity Network
for Anaphora Resolution. In ACL.

Xiaoqiang Luo, Abe Ittycheriah, Hongyan Jing, Nanda
Kambhatla, and Salim Roukos. 2004. A Mention-
Synchronous Coreference Resolution Algorithm
Based On the Bell Tree. In ACL.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 Shared Task: Modeling Multilingual Unre-
stricted Coreference in OntoNotes. In Joint Confer-
ence on EMNLP and CoNLL - Shared Task, CoNLL
’12.

Jack W. Rae, Jonathan J. Hunt, Ivo Danihelka, Timothy
Harley, Andrew W. Senior, Gregory Wayne, Alex
Graves, and Tim Lillicrap. 2016. Scaling Memory-
Augmented Neural Networks with Sparse Reads and
Writes. In NeurIPS.

Altaf Rahman and Vincent Ng. 2011. Narrowing the
modeling gap: a cluster-ranking approach to coref-
erence resolution. Journal of Artificial Intelligence
Research, 40:469–521.

Adam Santoro, Sergey Bartunov, Matthew Botvinick,
Daan Wierstra, and Timothy P. Lillicrap. 2016. One-
shot Learning with Memory-Augmented Neural Net-
works. In ICML.

Veselin Stoyanov and Jason Eisner. 2012. Easy-first
Coreference Resolution. In COLING.

MK Tanenhaus, MJ Spivey-Knowlton, KM Eberhard,
and JC Sedivy. 1995. Integration of visual and lin-
guistic information in spoken language comprehen-
sion. Science, 268(5217).

Shubham Toshniwal, Allyson Ettinger, Kevin Gimpel,
and Karen Livescu. 2020. PeTra: A Sparsely Super-
vised Memory Model for People Tracking. In ACL.

Kellie Webster and James R. Curran. 2014. Lim-
ited memory incremental coreference resolution. In
COLING.

Sam Wiseman, Alexander M. Rush, and Stuart M.
Shieber. 2016. Learning Global Features for Coref-
erence Resolution. In NAACL.

Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Jiwei
Li. 2020. Coreference Resolution as Query-based
Span Prediction. In ACL.

Patrick Xia, João Sedoc, and Benjamin Van Durme.
2020. Revisiting Memory-Efficient Incremental
Coreference Resolution. In EMNLP.

8525

5 10 15 20

Maximum Active Entities (MAE)

0

5

10

15

20

25

#
of

do
cu

m
en

ts

(a) LitBank.

5 10 15 20 25
Maximum Active Entities (MAE)

0

100

200

300

400

#
of

do
cu

m
en

ts

(b) OntoNotes Training Set.

Figure 1: Histograms of Maximum Active Entities for documents in LitBank and OntoNotes.

0.0 0.2 0.4 0.6 0.8 1.0
Entity Spread (ES)

0

200

400

600

#
of

en
ti

ti
es

(a) LitBank.

0.0 0.2 0.4 0.6 0.8 1.0
Entity Spread (ES)

0

2000

4000

6000

8000

#
of

en
ti

ti
es

(b) OntoNotes Training Set.

Figure 2: Histograms of Entity Spread as fraction of document length for LitBank and OntoNotes.

A Appendix

A.1 Maximum Active Entities

Figure 1 visualizes the histograms of length of En-
tity Spread (ES), defined in Section 2, as a fraction
of document length for documents in LitBank and
OntoNotes. For LitBank we only visualize the en-
tity spread of non-singleton clusters because oth-
erwise the histogram is too skewed towards one.
Figure 2 visualizes the histograms of Maximum
Active Entity Count (MAE), defined in Section 2,
for documents in LitBank and OntoNotes.

A.2 Model Details

Other hyperparameters We stick with the hy-
perparameters for feedforward neural network
(FFNN) size and depth, and dropout from Joshi
et al. (2020). One hyperparameter that we find to be
important is the weight of the non-coreferent term
in the cross-entropy loss for the first step of men-
tion clustering. We find that placing a higher weight
of 2.0 on that term leads to consistent performance
gains. This might be because of that term’s signifi-

Table 8: Hyperparameter options with the bold choices
highlighted as bold.

Parameter Range

Dropout {0.3}
FFNN hidden layer {3000}
FFNN # of hidden layers 1
Document Encoding {Independent, Overlap}
Non-coreferent entity weight {1.0, 2.0, 5.0}

cance, as the value of that term decides whether the
next step of mention clustering is triggered or not.

Expected Validation Performance Since Lit-
Bank has 10 cross-validation splits, the grid search
based tuning process was limited to a few cross-
validation splits. For LitBank, in our initial exper-
iments with gold mention clustering we find that
overlap segmentation gave a gain of about 0.5%
F1 and we stuck with the choice from then on-
wards. For non-coreferent entity weight, we see an
improvement of 0.5-1% F1 on going from 1.0 to
2.0 but the performance with 5.0 weight drops be-
low of that with 1.0.

8526

For OntoNotes, we find that deviating from over-
lap to independent results in a drop of about 1%
F1 absolute performance for the LB-MEM model
with 5 and 10 memory cells, the other two models
are almost unaffected. The reason why overlap is
crucial to the LB-MEM model is because on aver-
age the tokens get more future context which helps
the model in “anticipating" which entities are im-
portant and need to be kept in the memory.

A.3 Ground Truth Generation
In this section we explain how the ground truth
action sequence is generated corresponding to the
predicted mention sequence. The ground truth for
U-MEM model is fairly straight forward. For the
bounded memory models, we keep growing the
number of entities till we hit the memory ceiling.
For all the entities in memory, we maintain the num-
ber of mentions remaining in the ground truth clus-
ter. For example, a cluster with a total of five men-
tions, two of which have already been processed by
the model, has three remaining mentions.

Suppose now a mention corresponding to a cur-
rently untracked entity comes in and the memory
is already at full capacity. Then for the LB-MEM
model, we compare the number of mentions of this
new entity (along with the current mention) against
the number of mentions remaining for all the enti-
ties currently being tracked. If there are entities in
memory with number of remaining mentions less
than or equal to the number of mentions of this cur-
rently untracked entity, then the untracked entity
replaces the entity with the least number of remain-
ing mentions. Ties among the entities with least
number of remaining mentions are broken by the
least recently seen entity. If there’s no such entity
in the memory, then the mention is ignored. For
the RB-MEM model, the comparison is done in a
similar way but is limited to the LRU entity.

A.4 Miscellaneous
Computing Infrastructure & Runtime All the
models for a single cross validation split of LitBank
can be trained within 4 hours. The U-MEM models
require 24GB memory GPUs and are trained on
TitanRTX. The LB-MEM and RB-MEM models
can be trained on 12GB memory GPUs.

As in LitBank, the U-MEM model for
OntoNotes require 24GB memory GPUs. The
LB-MEM and RB-MEM models can be trained
on 12GB memory GPUs. Training on OntoNotes
finishes within 12 hours.

Table 9: Number of model parameters (in millions).

LitBank OntoNotes

U-MEM 37.36 37.42
LB-MEM 46.83 46.95
RB-MEM 46.83 46.95

Table 10: Spearman correlation of F1 score with docu-
ment length and # of entities in OntoNotes dev set.

Model Document Length # of Entities

U-MEM -0.31 -0.27
LB-MEM

5 cells -0.38 -0.39
10 cells -0.37 -0.35
20 cells -0.30 -0.27

RB-MEM
5 cells -0.42 -0.47
10 cells -0.36 -0.37
20 cells -0.33 -0.30

Number of model parameters. Table 9 shows
the number of trainable parameters for all the
model and dataset combinations. LB-MEM and
RB-MEM have additional parameters in compar-
ison to U-MEM for predicting a score correspond-
ing to the number of remaining mentions for an
entity. Comparing across datasets, the OntoNotes
models have a few additional parameters than their
LitBank counterparts for modeling the document
genre.

Evaluation Metric Code. We use
the coreference scorer Perl script avail-
able at https://github.com/conll/

reference-coreference-scorers. We also
use the Python implementation by Kenton Lee
available at https://github.com/kentonl/

e2e-coref/blob/master/metrics.py. The two
scripts can have some rounding differences.

Effect of Document Length and Number of En-
tities. Table 10 presents the Spearman correla-
tion between document F1 score and both docu-
ment length and number of entities in the document.
The correlations are negative because the problem
becomes more challenging with increase in doc-
ument length and entities. The increase in mem-
ory for bounded models results in less negative
correlation, suggesting improved performance for
challenging documents. The slightly less negative
correlation for LB-MEM models than RB-MEM
models for 20 memory cells (when their dev per-
formance is similar) implies that LB-MEM models
perform better for longer OntoNotes documents.

https://github.com/conll/reference-coreference-scorers
https://github.com/conll/reference-coreference-scorers
https://github.com/kentonl/e2e-coref/blob/master/metrics.py
https://github.com/kentonl/e2e-coref/blob/master/metrics.py

