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Abstract

Topic models are often used to identify human-
interpretable topics to help make sense of large
document collections. We use knowledge dis-
tillation to combine the best attributes of proba-
bilistic topic models and pretrained transform-
ers. Our modular method can be straightfor-
wardly applied with any neural topic model
to improve topic quality, which we demon-
strate using two models having disparate archi-
tectures, obtaining state-of-the-art topic coher-
ence. We show that our adaptable framework
not only improves performance in the aggre-
gate over all estimated topics, as is commonly
reported, but also in head-to-head comparisons
of aligned topics.

1 Introduction

The core idea behind the predominant pretrain and
fine-tune paradigm for transfer learning in NLP
is that general language knowledge, gleaned from
large quantities of data using unsupervised objec-
tives, can serve as a foundation for more special-
ized endeavors. Current practice involves taking
the full model that has amassed such general knowl-
edge and fine-tuning it with a second objective ap-
propriate to the new task (see Raffel et al., 2019,
for an overview). Using these methods, pre-trained
transformer-based language models (e.g., BERT,
Devlin et al., 2019) have been employed to great
effect on a wide variety of NLP problems, thanks,
in part, to a fine-grained ability to capture aspects
of linguistic context (Clark et al., 2019; Liu et al.,
2019; Rogers et al., 2020).

However, this paradigm introduces a subtle but
insidious limitation that becomes evident when the
downstream application is a topic model. A topic
model may be cast as a (stochastic) autoencoder
(Miao et al., 2016), and we could fine-tune a pre-
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Figure 1: Improving a base neural topic model with
knowledge distillation. A document is mapped through
both a standard BoW representation and a BERT-based
Auto-encoder “Teacher” (BAT), yielding two distribu-
tions over words. These are used as the ground truth
in the “student” topic model’s document reconstruction
loss LKD (backpropagated along the dotted line). Cru-
cially, the BAT distribution assigns mass to unobserved
but related terms (unbolded).

trained transformer with an identical document re-
construction objective. But in replacing the original
topic model, we lose the property that makes it de-
sirable: its interpretability. The transformer gains
its contextual power from its ability to exploit a
huge number of parameters, while the interpretabil-
ity of a topic model comes from a dramatic dimen-
sionality reduction.

We combine the advantages of these two
approaches—the rich contextual language knowl-
edge in pretrained transformers and the intelligi-
bility of topic models—using knowledge distilla-
tion (Hinton et al., 2015). In the original formu-
lation, knowledge distillation involves training a
parameter-rich teacher classifier on large swaths
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of data, then using its high-quality probability es-
timates over outputs to guide a smaller student
model. Since the information contained in these
estimates is useful—a picture of an ox will yield
higher label probabilities for BUFFALO than APRI-
COT—the student needs less data to train and can
generalize better.

We show how this principle can apply equally
well to improve unsupervised topic modeling,
which to our knowledge has not previously been
attempted. While distillation usually involves two
models of the same type, it can also apply to mod-
els of differing architectures. Our method is con-
ceptually quite straightforward: we fine-tune a pre-
trained transformer (Sanh et al., 2019) on a docu-
ment reconstruction objective, where it acts in the
capacity of an autoencoder. When a document is
passed through this BERT autoencoder, it generates
a distribution over words that includes unobserved
but related terms. We then incorporate this distilled
document representation into the loss function for
topic model estimation. (See Figure 1.)

To connect this method to the more standard su-
pervised knowledge distillation, observe that the
unsupervised “task” for both an autoencoder and
a topic model is the reconstruction of the original
document, i.e. prediction of a distribution over the
vocabulary. The BERT autoencoder, as “teacher”,
provides a dense prediction that is richly informed
by training on a large corpus. The topic model,
as “student”, is generating its own prediction of
that distribution. We use the former to guide the
latter, essentially as if predicting word distribu-
tions were a multi-class labeling problem.1 Our ap-
proach, which we call BERT-based Autoencoder as
Teacher (BAT), obtains best-in-class results on the
most commonly used measure of topic coherence,
normalized pointwise mutual information (NPMI,
Aletras and Stevenson, 2013) compared against
recent

state-of-the-art-models that serve as our base-
lines.

In order to accomplish this, we adopt neural
topic models (NTM, Miao et al., 2016; Srivastava
and Sutton, 2017; Card et al., 2018; Burkhardt
and Kramer, 2019; Nan et al., 2019, inter alia),

1An interesting conceptual link here can be found in La-
tent Semantic Analysis (LSA, Landauer and Dumais, 1997),
an early predecessor of today’s topic models. The original
discussion introducing LSA has a very autoencoder-like fla-
vor, explicitly illustrating the deconstruction of a collection
of sparsely represented documents and the reconstruction of a
dense document-word matrix.

which use various forms of black-box distribution-
matching (Kingma and Welling, 2014; Tolstikhin
et al., 2018).2 These now surpass traditional meth-
ods (e.g. LDA, Blei, 2003, and variants) in topic
coherence. In addition, it is easier to modify the
generative model of a neural topic model than for
a classic probabilistic latent-variable model, where
changes generally require investing effort in new
variational inference procedures or samplers. In
fact, because we leave the base NTM unmodified,
our approach is flexible enough to easily accommo-
date any neural topic model, so long as it includes
a word-level document reconstruction objective.
We support this claim by demonstrating improve-
ments on models based on both Variational (Card
et al., 2018) and Wasserstein (Nan et al., 2019)
auto-encoders.

To summarize our contributions:

• We introduce a novel coupling of the knowl-
edge distillation technique with generative
graphical models.

• We construct knowledge-distilled neural topic
models that achieve better topic coherence
than their counterparts without distillation
on three standard English-language topic-
modeling datasets.

• We demonstrate that our method is not only
effective but modular, by improving topic co-
herence in a base state-of-the-art model by
modifying only a few lines of code.3

• In addition to showing overall improvement
across topics, our method preserves the topic
analysis of the base model and improves
coherence on a topic-by-topic basis.

2 Methodology

2.1 Background on topic models
Topic modeling is a well-established probabilistic
method that aims to summarize large document
corpora using a much smaller number of latent top-
ics. The most prominent instantiation, LDA (Blei,
2003), treats each document as a mixture over K
latent topics, θd, where each topic is a distribution

2As a standard example, Srivastava and Sutton (2017) en-
code a document’s bag-of-words with a neural network to
parameterize the latent topic distribution, then sample from
the distribution to reconstruct the BoW.

3See Appendix F. Our full implementation, including
dataset preprocessing, is available at github.com/ahoho/
kd-topic-models.

github.com/ahoho/kd-topic-models
github.com/ahoho/kd-topic-models
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over words βk. By presenting topics as ranked
word lists and documents in terms of their probable
topics, topic models can provide legible and con-
cise representations of both the entire corpus and
individual documents.

In classical topic models like LDA, distributions
over the latent variables are estimated with approx-
imate inference algorithms tailored to the genera-
tive process. Changes to the model specification—
for instance, the inclusion of a supervised label—
requires attendant changes in the inference method,
which can prove onerous to derive. For some proba-
bilistic models, this problem may be circumvented
by the variational auto-encoder (VAE, Kingma and
Welling, 2014), which introduces a recognition
model that approximates the posterior with a neural
network. As a result, neural topic models have cap-
italized on the VAE framework (Srivastava and Sut-
ton, 2017; Card et al., 2018; Burkhardt and Kramer,
2019, inter alia) and other deep generative models
(Wang et al., 2019; Nan et al., 2019). In addition
to their flexibility, the best models now yield more
coherent topics than LDA.

Although our method (Section 2.3) is agnostic
as to the choice of neural topic model, we borrow
from Card et al. (2018) for both formal exposition
and our base implementation (Section 3). Card
et al. (2018) develop SCHOLAR, a generalization of
the first successful VAE-based neural topic model
(PRODLDA, Srivastava and Sutton, 2017). The
generative story is broadly similar to that of LDA,
although the uniform Dirichlet prior is replaced
with a logistic normal (LN ):4

For each document d:
– Draw topic distribution θd ∼ LN (α0)

– For each word wid in the document:
wid ∼ Multinomial (1, f(θd,B))

Following PRODLDA, B is a K × V matrix where
each row corresponds to the kth topic-word prob-
abilities in log-frequency space. The multinomial
distribution over a document’s words is parameter-
ized by

f(θd,B) = σ
(
m+ θ>d B

)
(1)

wherem is a vector of fixed empirical background
word frequencies and σ(·) is the softmax function.

4This choice is because the reparameterization trick behind
VAEs used to be limited to location-scale distributions, but
recent developments (e.g., Figurnov et al., 2018) have lifted
that restriction, as Burkhardt and Kramer (2019) demonstrate
with several Dirichlet-based NTMs using VAEs.

We highlight that each document is treated as a bag
of words, wBOW

d .
To perform inference on the model, VAE-based

models like SCHOLAR approximate the true in-
tractable posterior p(θd | ·) with a neural encoder
network g(wd) that parameterizes the variational
distribution q (θd | g(·)) (here, a logistic normal
with diagonal covariance). The Evidence Lower
BOund (ELBO) is therefore

ELBO = Eq(θd| · )
[
LR

]
− KL

[
q
(
θd | wBOW

d ,xd
)
|| p (θd)

]
, (2)

LR =
(
wBOW
d

)>
log f(θd,B), (3)

which is optimized with stochastic gradient descent.
The form of the reconstruction error LR is a con-
sequence of the independent multinomial draws.

2.2 Background on knowledge distillation

It is instructive to think of Eq. (1) as a latent lo-
gistic regression, intended to approximate the dis-
tribution over words in a document. Under this
lens, the neural topic model outlined above can be
cast as a multi-label classification problem. Indeed,
it accords with the standard structure: there is a
softmax over logits estimated by a neural network,
coupled with a cross-entropy loss.

However, because wBOW
d is a sparse bag of

words, the model is limited in its ability to gener-
alize. During backpropagation (Eq. (3)), the topic
parameters will only update to account for observed
terms, which can lead to overfitting and topics with
suboptimal coherence.

In contrast, dense document representations can
capture rich information that bag-of-words repre-
sentations cannot.

These observations motivate our use of knowl-
edge distillation (KD, Hinton et al., 2015). The
authors argue that the knowledge learned by a large
“cumbersome” classifier on extensive data—e.g., a
deep neural network or an ensemble—is expressed
in its probability estimates over classes, and not just
contained in its parameters. Hence, these teacher
estimates for an input may be repurposed as soft
labels to train a smaller student model. In practice,
the loss against the true labels is linearly interpo-
lated with a loss against the teacher probabilities,
Eq. (4). We discuss alternative ways to integrate
outside information in Section 6.
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2.3 Combining neural topic modeling with
knowledge distillation

The knowledge distillation objective. To apply
KD to a “base” neural topic model, we replace the
reconstruction term LR in Eq. (3) with LKD, as
follows:

wBAT
d = σ

(
zBAT
d /T

)
Nd

ŵ = f(θd,B;T )

LKD = λT 2
(
wBAT
d

)>
log ŵ + (1− λ)LR (4)

Here, zBAT
d are the logits produced by the teacher

network for a given input document d, meaning
that wBAT

d acts as a smoothed pseudo-document.
T is the softmax temperature, which controls how
diffuse the estimated probability mass is over the
words (hence f(·;T ) is Eq. (1) with the correspond-
ing scaling). This differs from the original KD in
two ways: (a) it scales the estimated probabilities
by the document length Nd, and (b) it uses a multi-
label loss.

The teacher model. We generate the teacher log-
its zBAT using the pretrained transformer DISTIL-
BERT (Sanh et al., 2019), itself a distilled version
of BERT (Devlin et al., 2019).5 BERT-like models
are generally pretrained on large domain-general
corpora with a language-modeling like objective,
yielding an ability to capture nuances of linguistic
context more effectively than bag-of-words models
(Clark et al., 2019; Liu et al., 2019; Rogers et al.,
2020). Mirroring the NTM’s formulation as a vari-
ational auto-encoder, we treat DISTILBERT as a
deterministic auto-encoder, fine-tuning it with the
document-reconstruction objective LR on the same
dataset. Thus, we use a BERT-based Autoencoder
as our Teacher model, hence BAT.6

Clipping the logit distribution. Depending on
preprocessing, V may number in the tens of thou-
sands of words. This leads to a long tail of proba-
bility mass assigned to unlikely terms, and breaks
standard assumptions of sparsity. Tang et al. (2020),

5DISTILBERT’s light weight accommodates longer docu-
ments, necessary for topic modeling. Even with this change,
we divide very long documents into chunks, estimating logits
for each chunk and taking the pointwise mean. More complex
schemes (i.e., LSTMs, Hochreiter and Schmidhuber, 1997)
yielded no benefit.

6A reader familiar with variational NTMs may notice that
we haven’t mentioned an obvious means of incorporating
representations from a pretrained transformer: encoding the
document representation from a BERT-like model. This yields
unimpressive results; see Appendix D.1.

D V Avg Nd Preprocessing details

20NG 18k 2k 87.1 Srivastava and Sutton (2017)
Wiki 28.5k 20k 1395.4 Nan et al. (2019)
IMDb 50k 5k 95.0 Card et al. (2018)

Table 1: Corpus statistics, which vary in total number
of documents (D), vocabulary size (V ), and average
document length (Nd).

working in a classification setting, find that trun-
cating the logits to the top-n classes and assigning
uniform mass to the rest improves accuracy. We
instead choose the top cNd, c ∈ R+ logits and as-
sign zero probability to the remaining elements to
enforce sparsity.

3 Experimental Setup

3.1 Data and Metrics

We validate our approach using three readily avail-
able datasets that vary widely in domain, corpus
and vocabulary size, and document length: 20
Newsgroups (20NG, Lang, 1995),7 Wikitext-103
(Wiki, Merity et al., 2017),8 and IMDb movie
reviews (IMDb, Maas et al., 2011).9 These are
commonly used in neural topic modeling, with pre-
processed versions provided by various authors;
see references in Table 1 for details. For consis-
tency with prior work, we use a train/dev/test split
of 48/12/40 for 20NG, 70/15/15 for Wiki, and
50/25/25 for IMDb.10

We seek to discover a latent space of topics that
is meaningful and useful to people (Chang et al.,
2009). Accordingly, we evaluate topic coherence
using normalized mutual pointwise information
(NPMI), which is significantly correlated with
human judgments of topic quality (Aletras and
Stevenson, 2013; Lau et al., 2014) and widely used
to evaluate topic models.11 We follow precedent
and calculate (internal) NPMI using the top ten
words in each topic, taking the mean across the
NPMI scores for individual topics. Internal NPMI
is estimated with reference co-occurrence counts
from a held-out dataset from the same corpus,

7qwone.com/˜jason/20Newsgroups
8s3.amazonaws.com/research.metamind.

io/wikitext/wikitext-103-v1.zip
9ai.stanford.edu/˜amaas/data/sentiment

10The splits are used to estimate NPMI. Dev splits are used
to select hyperparameters, and test splits are run after hyper-
parameters are selected and frozen.

11We also obtain competitive results for document perplex-
ity, which has also been used widely but correlates negatively
with human coherence evaluations (Chang et al., 2009).

 qwone.com/~jason/20Newsgroups
 s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip
 s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip
 ai.stanford.edu/~amaas/data/sentiment
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i.e., the dev or test split. While internal NPMI is
the metric of choice for most prior work, we also
provide external NPMI results using Gigaword 5
(Parker et al., 2011), following Card et al. (2018).

3.2 Experimental Baselines

We select three experimental baseline models that
represent diverse styles of neural topic modeling.12

Each achieves the highest NPMI on the majority
of its respective datasets, as well as a considerable
improvement over previous neural and non-neural
topic models (such as Srivastava and Sutton, 2017;
Miao et al., 2016; Ding et al., 2018). All our base-
lines are roughly contemporaneous with one an-
other, and had yet to be compared in a head-to-head
fashion prior to our work.
SCHOLAR. Card et al. (2018) use a VAE-based
(Kingma and Welling, 2014) neural topic model-
ing setup (as introduced in Srivastava and Sutton,
2017) with a logistic normal prior to approximate
the Dirichlet, and provide an elegant way to incor-
porate document metadata.
DVAE. Burkhardt and Kramer (2019) use a Dirich-
let prior, where its reparameterization is enabled
by rejection sampling variational inference. This
allows it to tap into the same generative story as the
original LDA formulations of Blei (2003), and to
enjoy the advantageous properties of the Dirichlet
like multi-modality (Wallach et al., 2009; Wang
et al., 2020).
W-LDA. Nan et al. (2019) forego the VAE in favor
of a Wasserstein auto-encoder (Tolstikhin et al.,
2018), using a Dirichlet prior that is matched by
minimizing Maximum Mean Discrepancy. They
find the method leads to state-of-the-art coherence
on several datasets and encourages topics to exhibit
greater word diversity.

We demonstrate the modularity of our core
innovation by combining our method with both
SCHOLAR and W-LDA (Section 4).

3.3 Our Models and Settings

As discussed in Section 2.3, our approach relies
on a “base” neural topic model and unnormalized
probabilities over words estimated by a transformer
as “teacher”. We discuss each in turn.

Neural topic models augmented with knowl-
edge distillation. We experiment with both

12This use of “baseline” should not be confused with the
“base” neural topic model augmented by knowledge distillation
(Section 2.3).

SCHOLAR and W-LDA as base models. The for-
mer constitutes our primary model and point of
comparison with baselines, while the latter is a
proof-of-concept that attests to our method’s modu-
larity; we added knowledge distillation to W-LDA
with only a few lines of code (Appendix F). We
evaluate both at K = 50 and K = 200 topics.

We tune using NPMI, with reference co-
occurrence counts taken from a held-out develop-
ment set from the relevant corpus. For our base-
lines, we use the publicly-released author imple-
mentations.13 While we generally attempt to retain
the original hyperparameter settings when avail-
able, we do perform an exhaustive grid search on
the SCHOLAR baselines and SCHOLAR+BAT to en-
sure fairness in comparison (ranges, optimal values,
and other details in Appendix E.1).

Our method also introduces additional hyperpa-
rameters: the weight for KD loss, λ (Eq. (4)); the
softmax temperature T ; and the proportion of the
word-level teacher logits that we retain (relative to
document length, see clipping in Section 2.3). For
most dataset-K pairs, we find that we can improve
topic quality under most settings, with a relatively
small set of values for each hyperparameter leading
to better results. In fact, following the extensive
search on SCHOLAR+BAT, we found we could tune
W-LDA within a few iterations.

Topic models rely on random sampling proce-
dures, and to ensure that our results are robust, we
report the average values across five runs (previ-
ously unreported by the authors of our baselines).

The DISTILBERT teacher. We fine-tune a
modified version of DISTILBERT with the same
document reconstruction objective as the NTM
(LR, Eq. (3)) on the training data. Specifically,
DISTILBERT maps a WordPiece-tokenized (Wu
et al., 2016) document d to an l-dimensional hidden
vector with a transformer (Vaswani et al., 2017),
then back to logits over V words (tokenized with
the same scheme as the topic model). For long
documents, we split into blocks of 512 tokens and
mean-pool the transformer outputs. We use the pre-
trained model made available by the authors (Wolf

13SCHOLAR: github.com/dallascard/scholar
W-LDA: github.com/awslabs/w-lda
DVAE: github.com/sophieburkhardt/
dirichlet-vae-topic-models
For augmented models we start with our own reimplemen-
tations of the baseline approaches in a common codebase,
validated by obtaining comparable results to the original
authors on their datasets.

github.com/dallascard/scholar
github.com/awslabs/w-lda
github.com/sophieburkhardt/dirichlet-vae-topic-models
github.com/sophieburkhardt/dirichlet-vae-topic-models
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K = 50 K = 200
20NG Wiki IMDb 20NG Wiki IMDb

DVAE 0.340 0.490 0.145 0.316 0.450 0.160
W-LDA 0.279 0.494 0.136 0.188 0.308 0.095
SCHOLAR 0.322 (0.007) 0.494 (0.005) 0.168 (0.002) 0.263 (0.002) 0.473 (0.005) 0.140 (0.001)

SCH. + BAT 0.354 (0.004) 0.521 (0.009) 0.182 (0.002) 0.332 (0.002) 0.513 (0.001) 0.175 (0.003)

Table 2: The NPMI for our baselines (Section 3.2) compared with BAT (explained in Section 2.3) using SCHOLAR
as our base neural architecture. We achieve better NPMI than all baselines across three datasets and K = 50,K =
200 topics. We use 5 random restarts and report the standard deviation.

et al., 2019). We train until perplexity converges on
the same held-out dev set used in the topic model-
ing setting. Unsurprisingly, DISTILBERT achieves
dramatically lower perplexity than all topic model
baselines. Note that we need only train the model
once per corpus, and can experiment with different
NTM variations using the same zBAT.

4 Results and Discussion

Using the VAE-based SCHOLAR as the base model,
topics discovered using BAT are more coherent,
as measured via NPMI, than previous state-of-the-
art baseline NTMs (Table 2), improving on the
DVAE and W-LDA baselines, and the baseline of
SCHOLAR without the KD augmentation. We estab-
lish the robustness of our approach’s improvement
by taking the mean across multiple runs with differ-
ent random seeds, yielding consistent improvement
over all baselines for all the datasets. We validate
the approach using a smaller and larger number of
topics, K = 50 and 200, respectively.

In addition to its improved performance, BAT
can apply straightforwardly to other models, be-
cause it makes very few assumptions about the base
model—requiring only that it rely on a word-level
reconstruction objective, which is true of the major-
ity of neural topic models proposed to date. We il-
lustrate this by using the Wasserstein auto-encoder
(W-LDA) as a base NTM, showing in Table 3 that
BAT improves on the unaugmented model.14

We report the dev set results (corresponding
to the test set results in Tables 2 and 3) in Ap-
pendix A—the same pattern of results is obtained,
for all the models.

14We note that the W-LDA baseline did not tune well on
200 topics, further complicated by the model’s extensive run
time. As such, we focus on augmenting that model for 50
topics, consistent with the number of topics on which Nan
et al. (2019) report their results. We add preliminary results
using BAT with DVAE in Appendix C.

Finally, we also compute NPMI using reference
counts from an external corpus (Gigaword 5, Parker
et al., 2011) for SCHOLAR and SCHOLAR+BAT
(Table 4). We find the same patterns generally
hold: in all but one setting (Wiki, K = 50), BAT
improves topic coherence relative to SCHOLAR.
These external NPMI results suggest that our
model avails itself of the distilled general language
knowledge from pretrained BERT, and moreover
that our fine-tuning procedure does not overfit to
the training data.

20NG Wiki IMDb

W-LDA 0.279 (0.010) 0.494 (0.012) 0.136 (0.008)
+BAT 0.299 (0.010) 0.505 (0.014) 0.162 (0.003)

Table 3: Mean NPMI (s.d.) across 5 runs for W-LDA
(Nan et al., 2019) and W-LDA+BAT forK = 50, show-
ing improvement on two of three datasets. This demon-
strates that our method is modular and can be used with
base neural topic models that vary significantly in archi-
tecture.

K SCHOLAR +BAT

50 20ng 0.147 (0.002) 0.170 (0.006)
Wiki 0.193 (0.006) 0.187 (0.004)
IMDb 0.149 (0.003) 0.161 (0.003)

200 20ng 0.111 (0.001) 0.171 (0.002)
Wiki 0.177 (0.003) 0.190 (0.008)
IMDb 0.122 (0.002) 0.159 (0.003)

Table 4: External NPMI (s.d.) for the base SCHOLAR
and SCHOLAR+BAT. Models selected according to per-
formance on the development set using internal NPMI.

5 Impact of BAT on Individual Topics

Following standard practice, we have established
that our models discover more coherent topics on
average when compared to others (Tables 2 and 3).
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Figure 2: Jensen-Shannon divergence for aligned topic
pairs in the SCHOLAR and SCHOLAR+BAT models.

Now, we look more closely at the extent to which
those improvements are meaningful at the level of
individual topics. To do so we directly compare top-
ics discovered by the baseline neural topic model
(SCHOLAR) with corresponding topics obtained
when that model is augmented with BAT, looking
at the NPMIs of the corresponding topics as well
as considering them qualitatively.

We align the topics in the base and augmented
SCHOLAR models using a variation of competitive
linking, which produces a greedy approximation
to optimal weighted bipartite graph matching
(Melamed, 2000). A fully connected weighted
bipartite graph is constructed by linking all topic
pairs across (but not within) the two models, with
the weight for a topic pair being the similarity
between their word distributions as measured
by Jenson-Shannon (JS) divergence (Wong and
You, 1985; Lin, 1991). We pick the pair (ti, tj)
with the lowest JS divergence and add it to the
resulting alignment, then remove ti and tj from
consideration and iterate until no pairs are left.
The resulting aligned topic pairs can then be
sorted by their JS divergences to directly compare
corresponding topics.15

Fig. 2 shows the JS-divergences for aligned topic
pairs, for our three corpora. Based on visual in-
spection, we choose the 44 most aligned topic pairs
as being meaningful for comparison; beyond this
point, the topics do not bear a conceptual relation-
ship (using the same threshold for the three datasets
for simplicity).

When we consider these conceptually related

15Note that more similar topics have lower JS-divergence,
so we are seeking to minimize rather than maximize total
weight. We use JS-divergence because it is conveniently sym-
metric and finite.
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Figure 3: Number of matched topic pairs where
SCHOLAR+BAT improves coherence, compared with
the number of matched pairs where the baseline im-
proves coherence.

topic pairs, we see that the model augmented with
BAT has the topic with the higher NPMI value more
often across all three datasets (Fig. 3). This means
that BAT is not just producing improvements in the
aggregate (Section 4): its effect can be interpreted
more specifically as identifying the same space of
topics generated by an existing model and, in most
cases, improving the coherence of individual topics.
This highlights the modular value of our approach.

Table 5 provides qualitative discussion for one
example from each corpus, which we have selected
for illustration from a single randomly selected
run of the baseline SCHOLAR and SCHOLAR+BAT
models for K = 50. We find that, consistent with
prior work on automatic evaluation of topic mod-
els, differences in NPMI do appear to correspond to
recognizable subjective differences in topic quality.
So that readers may form their own judgments, Ap-
pendix G presents 15 aligned pairs for each corpus,
selected randomly by stratifying across levels of
alignment quality to create a fair sample to review.

6 Related Work

Integrating embeddings into topic models. A
key goal in our use of knowledge distillation is to
incorporate relationships between words that may
not be well supported by the topic model’s input
documents alone. Some previous topic models
have sought to address this issue by incorporating
external word information, including word senses
(Ferrugento et al., 2016) and pretrained word
embeddings (Hu and Tsujii, 2016; Yang et al.,
2017; Xun et al., 2017; Ding et al., 2018). More
recently, Bianchi et al. (2020) have incorporated
BERT embeddings into the encoder to improve
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NPMI Topic

20ng SCHOLAR 0.454 nhl hockey player coach ice playoff team league stanley european
SCHOLAR+BAT 0.523 nhl hockey player team coach playoff cup wings stanley leafs

Wiki SCHOLAR 0.547 jtwc jma typhoon monsoon luzon geophysical pagasa guam cyclone southwestward
SCHOLAR+BAT 0.621 jtwc jma typhoon meteorological intensification monsoon dissipating shear outflow trough

IMDb SCHOLAR 0.197 adaptation version novel bbc versions jane kenneth handsome adaptations faithful
SCHOLAR+BAT 0.218 adaptation novel book read books faithful bbc version versions novels

Table 5: Selected examples of SCHOLAR+BAT improving on topics from SCHOLAR. We observe that the improved
20ng topic is more cleanly focused on the NHL (removing european, adding the Toronto Maple Leafs, evoking
the Stanley Cup rather than the more generic ice); the improved wiki topic about typhoons is more clearly
concentrated on meterological terms, rather than interspersing specific locations of typhoons (luzon, guam); and
the improved IMDb topic more cleanly reflects what we would characterize as “video adaptations” by bringing in
terms about that subject (book, books, novels, read) in place of predominant words relating to particular adaptations.
Randomly selected examples can be found in Appendix G.

topic coherence. (See Appendix D.1 for our own
related experiments, which yielded mixed results.)
We refer the reader to Dieng et al. (2020) for an
extensive and up-to-date overview.

A limitation of these approaches is that they sim-
ply import general, non-corpus-specific word-level
information. In contrast, representations from a pre-
trained transformer can benefit from both general
language knowledge and corpus-dependent infor-
mation, by way of the pretraining and fine-tuning
regime. By regularizing toward representations
conditioned on the document, we remain coherent
relative to the topic model data. An additional key
advantage for our method is that it involves only a
slight change to the underlying topic model, rather
than the specialized designs by the above methods.

Knowledge distillation. While the focus was
originally on single-label image classification, KD
has also been extended to the multi-label setting
(Liu et al., 2018b). In NLP, KD has usually been ap-
plied in supervised settings (Kim and Rush, 2016;
Huang et al., 2018; Yang et al., 2020), but also in
some unsupervised tasks (usually using an unsuper-
vised teacher for a supervised student) (Hu et al.,
2020; Sun et al., 2020). Xu et al. (2018) use word
embeddings jointly learned with a topic model in a
procedure they term distillation, but do not follow
the method from Hinton et al. (2015) that we em-
ploy (instead opting for joint-learning). Recently,
pretrained models like BERT have offered an attrac-
tive choice of teacher model, used successfully for
a variety of tasks such as sentiment classification
and paraphrasing (Tang et al., 2019a,b). Work in
distillation often cites a reduction in computational
cost as a goal (e.g., Sanh et al., 2019), although
we are aware of at least one effort that is focused

specifically on interpretability (Liu et al., 2018a).

Topic diversity. Coherence, commonly quanti-
fied automatically using NPMI, is the current stan-
dard for evaluating topic model quality. Recently
several authors (Dieng et al., 2020; Burkhardt and
Kramer, 2019; Nan et al., 2019) have proposed ad-
ditional metrics focused on the diversity or unique-
ness of topics (based on top words in topics). How-
ever, no one metric has yet achieved acceptance or
consensus in the literature. Moreover, such mea-
sures fail to distinguish between the case where
two topics share the same set of top n words, there-
fore coming across as essentially identical, versus
when one topic’s top n words are repeated indi-
vidually across multiple other topics, indicating a
weaker and more diffuse similarity to those top-
ics. We discuss issues related to topic diversity in
Appendix D.2.

7 Conclusions and Future Work

To our knowledge, we are the first to distill a “black-
box” neural network teacher to guide a probabilistic
graphical model. We do this in order to combine
the expressivity of probabilistic topic models with
the precision of pretrained transformers. Our modu-
lar method sits atop any neural topic model (NTM)
to improve topic quality, which we demonstrate
using two NTMs of highly disparate architectures
(VAEs and WAEs), obtaining state-of-the-art topic
coherence across three datasets from different do-
mains. Our adaptable framework does not just
produce improvements in the aggregate (as is com-
monly reported): its effect can be interpreted more
specifically as identifying the same space of topics
generated by an existing model and, in most cases,
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improving the coherence of individual topics, thus
highlighting the modular value of our approach.

In future work, we also hope to explore the
effects of the pretraining corpus (Gururangan
et al., 2020) and teachers (besides BERT) on the
generated topics. Another intriguing direction is
exploring the connection between our methods and
neural network interpretability. The use of knowl-
edge distillation to facilitate interpretability has
also been previously explored, for example, in Liu
et al. (2018a) to learn interpretable decision trees
from neural networks. In our work, as the weight
on the BERT autoencoder logits λ goes to one,
the topic model begins to describe less the corpus
and more the teacher. We believe mining this
connection can open up further research avenues;
for instance, by investigating the differences in
such teacher-topics conditioned on the pre-training
corpus. Finally, although we are motivated
primarily by the widespread use of topic models
for identifying interpretable topics (Boyd-Graber
et al., 2017, Ch. 3), we plan to explore the ideas
presented here further in the context of downstream
applications like document classification.
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K = 50 K = 200
20NG Wiki IMDb 20NG Wiki IMDb

DVAE 0.341 0.512 0.137 0.312 0.470 0.155
W-LDA 0.294 0.500 0.136 0.203 0.310 0.095
SCHOLAR 0.343 (0.003) 0.504 (0.007) 0.167 (0.002) 0.279 (0.002) 0.478 (0.005) 0.139 (0.002)

SCH. + BAT 0.377 (0.006) 0.526 (0.009) 0.180 (0.002) 0.343 (0.002) 0.518 (0.001) 0.174 (0.003)

Table 6: The development-set NPMI for our baselines (Section 3.2) compared with BAT (explained in Section 2.3)
using SCHOLAR as our base neural architecture. We achieve better NPMI than all baselines across three datasets
and K = 50,K = 200 topics. We use 5 random restarts report the standard deviation.

Appendix

A Dev Set Results

We optimized our models on the dev set, froze the
optimal models, and showed the results on the test
set in Tables 2 and 3. We show the corresponding
dev set results for those models in Tables 6 and 7.

20NG Wiki IMDb

W-LDA 0.294 (0.014) 0.500 (0.013) 0.136 (0.009)
+BAT 0.316 (0.010) 0.511 (0.016) 0.162 (0.003)

Table 7: The mean development-set NPMI (std. dev.)
across 5 runs for W-LDA and W-LDA+BAT for K =
50, showing improvement on all datasets. This demon-
strates that our innovation is modular and can be used
with base neural topic models that vary in architecture.

B Extrinsic Classification Results

The primary goal of our method is to improve the
coherence of generated topics. It is natural, how-
ever, to ask about the impact of our method on
downstream applications. We include here a pre-
liminary exploration suggesting that the addition
of BAT does not hurt performance in document
classification.

In our setup, we seek to predict document labels
yd from the MAP estimate of a document’s topic
distribution, θd. Specifically, we classify the news-
group to which a document was posted for the 20
newsgroups data (e.g., talk.politics.misc)
and a binary sentiment label for the IMDb re-
view data. We train a random forest classifier
using default parameters from scikit-learn
(Pedregosa et al., 2011) and report the accuracies
in Table 8 (averaged across 5 runs).

Much like other work that is aimed at topic coher-
ence rather than their downstream use in supervised
models (Nan et al., 2019), we find that our method
has little impact on predictive performance. While

it is possible that improvements may be obtained
by specifically tuning models for classification, or
by integrating BAT into model variations that com-
bine lexical and topic representations (e.g. Nguyen
et al., 2013), we leave this to future work.

K SCHOLAR +BAT

20ng 50 0.676 (0.003) 0.669 (0.005)
200 0.683 (0.002) 0.679 (0.004)

IMDb 50 0.829 (0.003) 0.823 (0.011)
200 0.805 (0.003) 0.814 (0.004)

Table 8: Random forest classification accuracy on
20ng and IMDb datasets, using topic estimates from
SCHOLAR and SCHOLAR + BAT .

C Using BAT with DVAE

We further illustrate our method’s modularity by ap-
plying BAT to our own reimplementation of DVAE
(Burkhardt and Kramer, 2019).16 In contrast to the
author’s primary implementation, which estimates
the model with rejection sampling variational infer-
ence (used in Section 4), we reimplemented DVAE,
approximating the Dirichlet gradient via pathwise
derivatives (Jankowiak and Obermeyer, 2018), sim-
ilar to Burkhardt and Kramer (2019)’s alternative
model variant using implicit gradients.

Our reimplementation shows baseline behavior
substantially similar to the author’s implementation.
In the course of our experimentation, we noted a
degeneracy in this model, in which high NPMI is
achieved but at the cost of redundant topics. This
failure mode is well-established, but as discussed
in Appendix D.2, we find the measures proposed to
diagnose topic diversity (including those proposed
by Burkhardt and Kramer, 2019; Nan et al., 2019)
to be problematic. Rather than use these metrics,

16We appreciate a reviewer’s suggestion that we add a +BAT
comparison for DVAE.
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therefore, we took a coarse but simple approach
and filtered out any models that yielded more than
one pair of identical topics, averaged across five
runs (defined as having two topics with the same set
of top-10 words). This filtering eliminated many
hyperparameter settings, leading us to believe that
DVAE is not robust to this problem.

Ultimately, we find that applying BAT to DVAE
does not hurt, and also does not help apprecia-
bly (Table 9). In addition, when applying the
above filtering criterion to our main SCHOLAR and
SCHOLAR + BAT models, we still obtain the posi-
tive results reported in Table 6. 17

20NG Wiki IMDb

DVAE 0.376 (0.004) 0.517 (0.006) 0.169 (0.007)
+BAT 0.401 (0.005) 0.515 (0.007) 0.169 (0.006)

Table 9: Mean development set NPMI (s.d.) across
5 runs for DVAE (Burkhardt and Kramer, 2019) and
DVAE+BAT for K = 50.

D Methodological Notes

D.1 Using BERT in the encoder
In SCHOLAR, the encoder takes the following form:

πd = g
([
WwBOW

d

])
(5)

θd ∼ LN (µν(πd), σν(πd)) (6)

Where the weight matrix W , along with the pa-
rameters of nueral networks µ(·) and σ(·), are our
variational parameters.

Card et al. (2018) propose that pre-trained
word2vec (Mikolov et al., 2013) embeddings can
replace W , meaning that the document repre-
sentation made available to the encoder is an l-
dimensional sum of word embeddings. Card et al.
(2018) argue that fixed embeddings act as an induc-
tive prior which improves topic coherence. Like-
wise, we might want to encode the document repre-
sentation from a BERT-like model and, in fact, this
has been attempted with some success (Bianchi
et al., 2020). The hypothesis is that a structure-
dependent representation of the document can bet-
ter parameterize its corresponding topic distribu-
tion.

17For K = 50. The single-pair threshold proves too restric-
tive for the K = 200 case, where no hyperparameter settings
pass the threshold. Increasing the tolerance to a maximum of
5 redundant pairs with K = 200 leads to a somewhat lower
average NPMI overall, but the same directional improvement,
i.e. SCHOLAR+BAT yields a significantly higher NPMI than
SCHOLAR.

Setting NPMI

Randomly updated embeds. 0.170 (0.007)
Fixed word2vec embeds. 0.172 (0.004)
Random 784-dim doc. rep. + w2v 0.175 (0.007)
Mean-pooled 784-dim BERT output + w2v 0.172 (0.002)
Random 5000-dim doc. rep. + w2v 0.178 (0.007)
5000-dim predicted probs. from BAT + w2v 0.180 (0.008)

Table 10: Effect on topic coherence of passing var-
ious document representations to the SCHOLAR en-
coder (using the IMDb data). Each setting describes
the document representation provided to the encoder,
which is transformed by one feed-forward layer of 300-
dimensions followed by a second down to K dimen-
sions. “+ w2v” indicates that we first concatenated
with the sum of the 300-dimensional word2vec embed-
dings for the document. Note that these early findings
are based on a different IMDb development set, a 20%
split from the training data. They are thus not directly
comparable to the results reported elsewhere in the text,
which used a separate held-out development set.

We experimented with this method as well, us-
ing both the hidden BERT representation and the
predicted probabilities, although we also include a
fixed randomized baseline to maintain parameter
parity. Results for IMDb are reported in Table 10,
and we find at best a mild improvement over the
baselines.18 We suspect the reason for this tepid
result is both that (a) in training, the effect of es-
timated local document-topic proportions on the
global topic-word distributions is diffuse and indi-
rect; and (b) the compression of the representation
into k dimensions causes too much of the high-
level linguistic information to be lost. Nonetheless,
owing to the slight benefit, we do pass the logits
to the encoder in our SCHOLAR-based model. We
avoid this change for the model based on W-LDA
to underscore the modularity of our method.

D.2 Topic Diversity

Burkhardt and Kramer (2019) have found a degen-
eracy in some topic models, wherein a single topic
will be repeated more than once with slightly vary-
ing terms (e.g., several Dadaism topics). Burkhardt
and Kramer (2019) and others (Nan et al., 2019;
Dieng et al., 2020) have independently proposed
related metrics to quantify the problem, but the lit-
erature has not converged on a solution. In contrast
to NPMI, we are not aware of any work that as-

18We also fail to reproduce the findings of Card et al. (2018),
showing no meaningful improvement in topic coherence with
fixed word2vec embeddings. It appears that this is a conse-
quence of their tuning for perplexity rather than NPMI.
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sesses the validity of such metrics with respect to
human judgements.

Moreover, all these proposals suffer from a com-
mon problem: because they are global measures of
word overlap, they fail to account for how words are
repeated across topics. For instance, Topic Unique-
ness (Nan et al., 2019) is identical regardless of
whether all of a topic’s top words are all repeated
in a single second topic, or individual top words
from that topic are repeated in several other topics.
In addition, the measures inappropriately penalize
partially-related topics.

They also penalize polysemy—and, more gen-
erally, the contextual flexibility of word meanings.
One of the key advantages of latent topics, com-
pared to surface lexical summaries, is that the same
word can contribute differently to an understand-
ing of what different topics are about. As a real
example from our experience, in modeling a set
of documents related to paid family and medical
leave, words like parent, mother, and father are
prominent in one topic related to parental leave
when a child is born (accompanying other terms
like newborn and maternity leave) and also in an-
other topic related to taking leave to care for family
members, including elderly parents (accompany-
ing other terms like elderly and aging). The fact
that topic models permit a word like parent to be
prominent in both of these clearly distinct topics,
emphasizing two different aspects of the word rel-
ative to the collection as a whole (being a parent
taking care of children, being a child taking care of
parents), is a feature, not a bug. We consider the
question of topic diversity an important direction
for future work.

E Experimental Procedures

In this section, we first provide details of our hyper-
parameters and tuning procedures, then turn to our
computing infrastructure and the rough runtime of
the SCHOLAR model.

E.1 Hyperparameter Tuning and Optimal
Values

We used well-tuned baselines to establish thresh-
olds for performance on NPMI (following the
reported hyperparameters in Card et al., 2018;
Burkhardt and Kramer, 2019; Nan et al., 2019).
While developing our model, we performed a
coarse-grained initial hyperparameter sweep to
identify ranges that were not beating the threshold,

and decided to exclude those ranges when perform-
ing a full grid search. We report the hyperparameter
ranges used in this search, along with their optimal
values (as determined by development set NPMI),
in Tables 11 to 15. These produced the final set of
results (Tables 2, 3, 6 and 7).

For the DISTILBERT training, we use
the default hyperparameter settings for the
bert-base-uncased model (Wolf et al.,
2019). Our code is a modified version of the MM-
IMDB multimodal sequence classification code
from the same codebase as DISTILBERT (https:
//github.com/huggingface/transformers/

tree/master/examples/contrib/mm-imdb),
and we use all default hyperparameter settings
specified there. We train for 7500 steps for
20ng, and 17000 steps for Wiki and IMDb (this
corresponds to convergence on development-set
perplexity).

E.2 Computing Infrastructure and Runtime

For the full hyperparameter sweep, we used an
Amazon Web Services ParallelCluster https://

github.com/aws/aws-parallelcluster with 40
nodes of g4dn.xlarge instances (consisting of
Nvidia T4 GPUs with 16 GB RAM), which ran for
about 5 days. For initial experimentation, we used
a SLURM cluster with a mix of consumer-grade
Nvidia GPUs (e.g., 1080, 2080).

In terms of runtime, SCHOLAR) and our own
SCHOLAR+BAT are equal and this is true for any
of our baseline model augmented with BAT. It is
important to note that the overhead in terms of
the overall runtime comes only from training the
DISTILBERT encoder on the full dataset first and
inference time for obtaining the logits after training.
Thus, users should keep in mind the initial step
of training and inferring teacher model logits and
saving them; once that is done for the dataset, our
model does not add to the runtime. We show the
comparison between the full runtimes, including
the initial step, in Fig. 4.

F Changes to W-LDA

In Fig. 5, we show the changes to the W-LDA
model necessary to accommodate our method. Ig-
noring the code to load & clip the logits, also consti-
tuting a minor change, we introduce about a dozen
lines.

https://github.com/huggingface/transformers/tree/master/examples/contrib/mm-imdb
https://github.com/huggingface/transformers/tree/master/examples/contrib/mm-imdb
https://github.com/huggingface/transformers/tree/master/examples/contrib/mm-imdb
https://github.com/aws/aws-parallelcluster
https://github.com/aws/aws-parallelcluster
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Dataset: 20NG k = 50 k = 200

Values Tried SCHOLAR
(optimal values)

SCHOLAR+BAT
(optimal values)

SCHOLAR
(optimal values)

SCHOLAR+BAT
(optimal values)

lr 0.002* 0.002 0.002 0.002 0.002
α 1.0* 1.0 1.0 1.0 1.0
λ {0.25, 0.5, 0.75, 0.95, 0.99, 0.999} - 0.75 - 0.99
T {1.0, 2.0, 3.0, 5.0} - 2.0 - 5.0

Table 11: Hyperparameter ranges and optimal values (as determined by development set NPMI) for SCHOLAR
and SCHOLAR+BAT , on the 20NG dataset. lr is the learning rate, α is the hyperparameter for the logistic normal
prior, λ is the weight on the teacher model logits from Eq. (4), and T is the softmax temperature from Eq. (4).
Other hyperparamter values (which can be accessed in our code base) which were kept at their default values
are not reported here. Values marked with the * are also kept at their default values per the base SCHOLAR
model (https://github.com/dallascard/scholar). All different sweeps in the grid search were run for
500 epochs with a batch size = 200.

Dataset: Wiki k = 50 k = 200

Values Tried SCHOLAR
(optimal values)

SCHOLAR+BAT
(optimal values)

SCHOLAR
(optimal values)

SCHOLAR+BAT
(optimal values)

lr {0.001, 0.002, 0.005} 0.001 0.001 0.002 0.005
α {0.0005, 0.00075, 0.001, 0.005, 0.01} 0.01 0.00075 0.0005 0.001
anneal {0.25, 0.5, 0.75} 0.25 0.5 0.25 0.5
λ {0.4, 0.5, 0.6, 0.7, 0.75, 0.8} - 0.75 - 0.75
T {1.0, 2.0} - 1.0 - 1.0
clipping {1.0, 1.5, 2.0} - 2.0 - 1.5

Table 12: Hyperparameter ranges and optimal values (as determined by development set NPMI) for SCHOLAR and
SCHOLAR+BAT , on the Wiki dataset. lr is the learning rate, α is the hyperparameter for the logistic normal prior,
anneal controls the annealing (as explained in Appendix B in Card et al. (2018)), λ is the weight on the teacher
model logits from Eq. (4), T is the softmax temperature from Eq. (4), and clipping controls how much of the logit
distribution to clip (Section 2.3). Other hyperparamter values (which can be accessed in our code base) which were
kept at their default values are not reported here. All different sweeps in the grid search were run for 500 epochs
with a batch size = 500.

Dataset: IMDb k = 50 k = 200

Values Tried SCHOLAR
(optimal values)

SCHOLAR+BAT
(optimal values)

SCHOLAR
(optimal values)

SCHOLAR+BAT
(optimal values)

lr 0.002* 0.002 0.002 0.002 0.002
α {0.01, 0.1, 0.5, 1.0} 0.5 0.5 0.1 0.1
anneal {0.25, 0.5, 0.75} 0.25 0.25 0.25 0.5
λ {0.25, 0.5, 0.75, 0.99} - 0.5 - 0.99
T {1.0, 2.0} - 1.0 - 1.0
clipping {0.0, 1.0, 10.0} - 10.0 - 0.0

Table 13: Hyperparameter ranges and optimal values (as determined by development set NPMI) for SCHOLAR and
SCHOLAR+BAT , on the IMDb dataset. lr is the learning rate, α is the hyperparameter for the logistic normal
prior, anneal controls the annealing (as explained in Appendix B in Card et al. (2018)), λ is the weight on the
teacher model logits from Eq. (4), T is the softmax temperature from Eq. (4), and clipping controls how much of
the logit distribution to clip (Section 2.3). Other hyperparamter values (which can be accessed in our code base)
which were kept at their default values are not reported here. Values marked with the * are also kept at their default
values per the base SCHOLAR model (https://github.com/dallascard/scholar). All different sweeps in
the grid search were run for 500 epochs with a batch size = 200.

https://github.com/dallascard/scholar
https://github.com/dallascard/scholar
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(Dataset: 20NG)

Values Tried W-LDA
(optimal values)

W-LDA+BAT
(optimal values)

lr {0.002} 0.002 0.002
α {0.1, 1.0} 0.1 0.1
λ {0.75, 0.99} - 0.75
T {1.0, 2.0} - 1.0

(Dataset: Wiki)

lr {0.001} 0.001 0.001
α {0.01, 0.1} 0.1 0.1
λ {0.25, 0.75} - 0.25
T {1.0, 2.0, 5.0} - 2.0
clipping {1.0, 2.0} - 1.0

(Dataset: IMDb)

lr {0.002} 0.002 0.002
α {0.1} 0.1 0.1
λ {0.75} - 0.75
T {1.0} - 1.0

Table 14: Hyperparameter ranges and optimal values (as determined by development set NPMI) for W-LDA and
W-LDA+BAT , on all three datasets. lr is the learning rate, α is the hyperparameter for the dirichlet prior, λ is the
weight on the teacher model logits from Eq. (4), T is the softmax temperature from Eq. (4), and clipping controls
how much of the logit distribution to clip (Section 2.3). Other hyperparameter values (which can be accessed in
our codebase) which were kept at their default values in the original baseline code are not reported here (also see
Nan et al. (2019) and https://github.com/awslabs/w-lda/). Values marked with the * are also kept at their
default values. All different sweeps in the grid search were run for 500 epochs and noise parameter = 0.5 (see Nan
et al. (2019)). For 20NG and IMDb, we used batch size = 200, and for Wiki, we used batch size = 360.

k = 50 k = 200

20NG Wiki IMDb 20NG Wiki IMDb

Optimal Dirichlet Prior 0.6 0.2 0.6 0.2

Table 15: For DVAE, we tried four values for the Dirichlet Prior (as per the values tried by the authors in Burkhardt
and Kramer (2019)) - {0.01, 0.1, 0.2, 0.6} and report the optimal values corresponding to the dev set results
(Table 2) and test set results (Table 6) in this table. Within the model variations available in the codebase for
DVAE (https://github.com/sophieburkhardt/dirichlet-vae-topic-models) we use the Dirichlet
VAE based on RSVI which is shown to give the highest NPMI scores in Burkhardt and Kramer (2019).

https://github.com/awslabs/w-lda/
https://github.com/sophieburkhardt/dirichlet-vae-topic-models
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20NG, K = 50 Wiki, K = 50 IMDb, K = 50 20NG, K = 200 Wiki, K = 200 IMDb, K = 200
Dataset, Number of Topics
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Runtime comparison for SCHOLAR and SCHOLAR+BAT

model

SCHOLAR

SCHOLAR+BAT

Figure 4: Runtime comparison for SCHOLAR) and our own SCHOLAR+BAT - Note that the overhead due to BAT
is only a due to the training and inference time required to obtain the DISTILBERT encoder logits on the full
dataset first, and once the teacher logits are available, the run time of both models is the same. We depict the full
approximate time (in hours) including this initial overhead in case of BAT .

G Impact of BAT on Individual Topics:
Aligned Topic Pair Examples

For each corpus (20NG, Wiki, and IMDb), a
single comparison of base and BAT-augmented
(SCHOLAR vs. SCHOLAR+BAT) 50-topic mod-
els was selected randomly, from the five runs used
in computing average performance in Fig. 3.

For each of those pairs of models, we then ran-
domly selected 15 aligned topic pairs from that set
of 50 to include in the tables below. Specifically, a
full set of 50 topic pairs was partitioned according
to JS divergence into the 10 most similar pairs, the
next 10 most similar, and so forth, for a total of
five “brackets” of topic alignment quality. Three
topic pairs were then selected at random from each
bracket, hence 15 pairs in all, in order to yield a fair
picture of what pairs look like at various qualities
of topic alignment.

In the tables below (Tables 16 to 18), we present
pairs sorted from best to worst alignment quality.
Recall that for NPMI, higher is better, and for JS
divergence, lower score indicates a higher quality
match (or alignment) for the topic pair.
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### In `compute_op.py`

## Retrieve BERT logits
docs = self.data.get_documents(key='train')
if self.args['use_kd']:

split_on = docs.shape[1] // 2
docs, bert_logits = docs[:,:split_on], docs[:,split_on:]
t = self.args['kd_softmax_temp']
kd_docs = nd.softmax(bert_logits / t) * nd.sum(docs, axis=1, keepdims=True)

# [... unchanged lines ...]

## Compute loss
with autograd.record():

# [... unchanged lines ...]
if self.args['use_kd']:

kd_logits = nd.log_softmax(x_reconstruction_u / t)
logits = nd.log_softmax(x_reconstruction_u)

kd_loss_reconstruction = nd.mean(nd.sum(- kd_docs * kd_logits, axis=1))
loss_reconstruction = nd.mean(nd.sum(- docs * logits, axis=1))

loss_total = self.args['recon_alpha'] * (
self.args['kd_loss_alpha'] * t * t * (kd_loss_reconstruction) +
(1 - self.args['kd_loss_alpha']) * loss_reconstruction

)
else:

# [... unchanged lines ...]

Figure 5: Modified portions of W-LDA model to accommodate BAT. We omit definitions of additional command-
line arguments and data loading, but they are similarly brief.

Pair # SCHOLAR vs SCHOLAR+BAT
(NPMI, Top 10 Topic Words) JS Divergence

1 SCHOLAR: (0.399, ’sin eternal lord heaven pray christ prayer jesus god hell’)
SCHOLAR+BAT: (0.394, ’eternal god hell sin heaven christ jesus christianity faith life’) 0.0287

4 SCHOLAR: (0.3512, ’score goal puck penalty season shot tie pitch game defensive’)
SCHOLAR+BAT: (0.3838, ’score goal season game puck shot leafs penalty play playoff’) 0.0345

8 SCHOLAR: (0.4307, ’doctrine church catholic scripture spirit biblical revelation bible resurrection christ’)
SCHOLAR+BAT: (0.4454, ’biblical church bible scripture doctrine catholic interpretation passage teaching jesus’) 0.0417

11 SCHOLAR: (0.7109, ’turks armenian genocide jews mountain armenians turkish proceed nazi armenia’)
SCHOLAR+BAT: (0.7297, ’turks genocide turkish armenian armenia armenians massacre turkey proceed muslim’) 0.0425

15 SCHOLAR: (0.2626, ’cryptography security network privacy mailing internet mail encrypt anonymous user’)
SCHOLAR+BAT: (0.289, ’anonymous mail network privacy internet security cryptography encrypt electronic ftp’) 0.0479

17 SCHOLAR: (0.3501, ’rider bike ride helmet motorcycle dog bmw dod honda seat’)
SCHOLAR+BAT: (0.3843, ’helmet bike rider ride dog motorcycle dod rear honda bmw’) 0.0498

22 SCHOLAR: (0.307, ’voltage circuit amp heat battery electronics frequency signal audio ac’)
SCHOLAR+BAT: (0.3236, ’circuit voltage amp wire audio wiring signal outlet input pin’) 0.0641

27 SCHOLAR: (0.4018, ’passage verse jesus biblical resurrection scripture translation interpretation bible prophet’)
SCHOLAR+BAT: (0.5262, ’jesus christ lord sin heaven resurrection holy mary father son’) 0.071

28 SCHOLAR: (0.2469, ’nt printer windows microsoft mac unix postscript pc os print’)
SCHOLAR+BAT: (0.2786, ’font color image format printer display pixel graphic postscript directory’) 0.0729

31 SCHOLAR: (0.2109, ’crash backup gateway disk windows install memory boot floppy cache’)
SCHOLAR+BAT: (0.3141, ’disk floppy dos scsi ram cache controller isa swap windows’) 0.0864

35 SCHOLAR: (0.2589, ’scientific science disease medicine treatment energy observe observation patient scientist’)
SCHOLAR+BAT: (0.2705, ’science morality objective scientific moral existence observation universe definition theory’) 0.093

40 SCHOLAR: (0.1252, ’interested kit sale advance email address australia thanks april mail’)
SCHOLAR+BAT: (0.206, ’mail email mailing address list thanks interested fax please send’) 0.1173

41 SCHOLAR: (0.2842, ’insurance tax hospital coverage health pay canadian kid care economy’)
SCHOLAR+BAT: (0.2354, ’dealer car price insurance buy pay sell money honda ford’) 0.1319

45 SCHOLAR: (0.3165, ’waco clinton president bush senate batf tax fbi compound vote’)
SCHOLAR+BAT: (0.5144, ’nsa crypto clipper escrow wiretap secure encryption chip warrant scheme’) 0.1791

48 SCHOLAR: (0.2329, ’screen mouse monitor printer inch resolution tube apple font print’)
SCHOLAR+BAT: (0.275, ’heat fuel tube cool detector radar gas nuclear hole cold’) 0.2527

Table 16: Fifteen aligned topic pairs from the 20NG dataset.
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Pair # SCHOLAR vs SCHOLAR+BAT
(NPMI, Top 10 Topic Words) JS Divergence

1 SCHOLAR: (0.5804, ’prognosis protein symptom intravenous diagnosis syndrome medication abnormality infection dysfunction’)
SCHOLAR+BAT: (0.5464, ’abnormality prognosis intravenous receptor syndrome antibiotic inflammation diagnosis mutation dos’) 0.163

4 SCHOLAR: (0.6036, ’parsec brightest orbiting astronomer planetary brightness luminosity jupiter constellation orbit’)
SCHOLAR+BAT: (0.586, ’orbiting habitable gliese planetary extrasolar parsec brightness luminosity orbital jupiter’) 0.1787

8 SCHOLAR: (0.4432, ’lap peloton uci breakaway sprint ferrari bmc tyre podium sauber’)
SCHOLAR+BAT: (0.4902, ’lap sprint podium finisher quickest uci mclaren ferrari peloton rosberg’) 0.1879

11 SCHOLAR: (0.5662, ’ny renumbering cr realigned intersects intersecting hamlet concurrency routing truncated’)
SCHOLAR+BAT: (0.5888, ’ny intersects renumbering intersecting realigned cr concurrency routing intersection hamlet’) 0.1989

15 SCHOLAR: (0.4866, ’byzantine caliphate ibn caliph byzantium abbasid thrace constantinople vassal umayyad’)
SCHOLAR+BAT: (0.4686, ’byzantium thrace caliphate nikephoros antioch byzantine envoy umayyad principality constantinople’) 0.2076

17 SCHOLAR: (0.4944, ’gubernatorial kentucky reelection republican democrat frankfort candidacy legislator congressman caucus’)
SCHOLAR+BAT: (0.494, ’gubernatorial reelection legislator congressman candidacy caucus whig democrat kentucky veto’) 0.2211

22 SCHOLAR: (0.4069, ’electrification electrified locomotive train nok railway freight oslo commuter nsb’)
SCHOLAR+BAT: (0.3567, ’nok electrified electrification commuter oslo tramway freight livery bergen locomotive’) 0.2391

27 SCHOLAR: (0.4187, ’gatehouse chancel nave stonework anglesey castle demography domesday storey vaulted’)
SCHOLAR+BAT: (0.4035, ’domesday demography cheshire gatehouse storey borough manor priory mersey avon’) 0.2564

28 SCHOLAR: (0.4041, ’frigate brig convoy hm torpedoed rigging destroyer sailed sighted starboard’)
SCHOLAR+BAT: (0.4126, ’brig frigate privateer rigging schooner sloop corvette sighted indiaman brest’) 0.2617

31 SCHOLAR: (0.2876, ’raaf battalion aircrew beachhead moresby amberley brigade usaaf dso jagdgeschwader’)
SCHOLAR+BAT: (0.5148, ’platoon counterattack bridgehead divisional battalion mortar perimeter brigade beachhead regimental’) 0.2651

35 SCHOLAR: (0.3361, ’thanhouser filmfare bollywood filmography directorial kumar telugu starred biopic hindi’)
SCHOLAR+BAT: (0.5322, ’kumar bollywood directorial filmography telugu filmfare prasad malayalam bachchan hindi’) 0.2888

40 SCHOLAR: (0.7394, ’batsman wicket bowled bowler bowling wisden cricketer selector inning crease’)
SCHOLAR+BAT: (0.761, ’bowled wisden selector batsman bowler wicket cricketer crease spinner mcc’) 0.3045

41 SCHOLAR: (0.4571, ’statute constitutionality plaintiff unconstitutional defendant judicial appellate amendment jurisdiction judiciary’)
SCHOLAR+BAT: (0.4569, ’prosecutor prosecution investigator testified testimony conviction convicted verdict sentenced pleaded’) 0.3137

45 SCHOLAR: (0.4178, ’edda mahabharata scripture purana goddess poem poetic shiva prose devotional’)
SCHOLAR+BAT: (0.3379, ’northumbria inscription kingship deity shrine annals worshipped attested buddha vassal’) 0.3658

48 SCHOLAR: (0.5286, ’cavalry grenadier flank bridgehead infantry bayonet brigade artillery regiment repulsed’)
SCHOLAR+BAT: (0.3652, ’dso despatch raaf gallantry adjutant instructor aviator canberra airman citation’) 0.544

Table 17: Fifteen aligned topic pairs from the Wiki dataset.

Pair # SCHOLAR vs SCHOLAR+BAT
(NPMI, Top 10 Topic Words) JS Divergence

1 SCHOLAR: (0.2333, ’scientist monster cgi alien creature scientists attack bullets aliens sci’)
SCHOLAR+BAT: (0.2636, ’scientist alien creature monster aliens computer cgi space giant scientists’) 0.0273

4 SCHOLAR: (0.165, ’vhs copy remember dvd ago tape saw video years loved’)
SCHOLAR+BAT: (0.1844, ’vhs copy tape remember dvd bought ago saw video available’) 0.0327

8 SCHOLAR: (0.1146, ’kids kid dad parents mom christmas decides dies santa guy’)
SCHOLAR+BAT: (0.118, ’dad mom kids parents kid uncle decides christmas dies cat’) 0.0379

11 SCHOLAR: (0.1968, ’adaptation version novel bbc versions jane kenneth handsome adaptations faithful’)
SCHOLAR+BAT: (0.2181, ’adaptation novel book read books faithful bbc version versions novels’) 0.0383

15 SCHOLAR: (0.2758, ’show episodes episode shows abc season aired sitcom television seasons’)
SCHOLAR+BAT: (0.2678, ’seasons episodes show aired episode abc sitcom season television network’) 0.0416

17 SCHOLAR: (0.0863, ’fails wooden lacks unconvincing shallow contrived wretched embarrassing thin embarrassment’)
SCHOLAR+BAT: (0.1047, ’lacks pacing fails contrived flat irritating lacking chemistry unconvincing uninteresting’) 0.0424

22 SCHOLAR: (0.174, ’documentary footage interviews music documentaries disc dvd musicians extras insight’)
SCHOLAR+BAT: (0.1796, ’footage available documentary release dvd print interviews vhs subtitles audio’) 0.0459

27 SCHOLAR: (0.1532, ’sheriff car town decides husband killer police investigate chase security’)
SCHOLAR+BAT: (0.2504, ’murder murdered detective killer murderer police murders suspects secretary serial’) 0.0531

28 SCHOLAR: (0.3054, ’christian religious god religion christ faith church jesus beliefs truth’)
SCHOLAR+BAT: (0.1027, ’filmmaker intellectual filmmakers pretentious artistic subject content sake context claim’) 0.0539

31 SCHOLAR: (0.1136, ’gags school rock band cartoons record boys principal radio metal’)
SCHOLAR+BAT: (0.3144, ’songs musical singing sing dancing singer concert song numbers dance’) 0.0556

35 SCHOLAR: (0.0813, ’development seemed boring predictable weak explanation slow potential interesting suspense’)
SCHOLAR+BAT: (0.092, ’hour asleep minutes seemed sounded sat felt rented waste confusing’) 0.0616

40 SCHOLAR: (0.1821, ’noir murder detective gritty crime cop thriller tough clint veteran’)
SCHOLAR+BAT: (0.1027, ’cop dennis sheriff gangster boss agent villain hopper action chases’) 0.0679

41 SCHOLAR: (0.095, ’porn cops girls random camera amateurish tedious amateur screaming chick’)
SCHOLAR+BAT: (0.1548, ’kills killed killer screaming killing kill boyfriend woods walks dies’) 0.0803

45 SCHOLAR: (0.1884, ’planet wars sci graphics space science game robot fiction weapons’)
SCHOLAR+BAT: (0.0959, ’action development fighting sequences visuals realistic epic fight battles cool’) 0.0925

48 SCHOLAR: (0.1732, ’book read books novel adaptation author reading disappointed adapted translation’)
SCHOLAR+BAT: (0.1063, ’liked overall surprised disappointed enjoyed pleasantly pretty expectations seemed expecting’) 0.1196

Table 18: Fifteen aligned topic pairs from the IMDB dataset.


