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Abstract

Reinforcement learning (RL) can enable task-oriented dialogue systems to steer the conversation
towards successful task completion. In an end-to-end setting, a response can be constructed in a
word-level sequential decision making process with the entire system vocabulary as action space.
Policies trained in such a fashion do not require expert-defined action spaces, but they have to
deal with large action spaces and long trajectories, making RL impractical. Using the latent space
of a variational model as action space alleviates this problem. However, current approaches use
an uninformed prior for training and optimize the latent distribution solely on the context. It is
therefore unclear whether the latent representation truly encodes the characteristics of different
actions. In this paper, we explore three ways of leveraging an auxiliary task to shape the latent
variable distribution: via pre-training, to obtain an informed prior, and via multitask learning.
We choose response auto-encoding as the auxiliary task, as this captures the generative factors of
dialogue responses while requiring low computational cost and neither additional data nor labels.
Our approach yields a more action-characterized latent representations which support end-to-end
dialogue policy optimization and achieves state-of-the-art success rates. These results warrant a
more wide-spread use of RL in end-to-end dialogue models.

1 Introduction

With the rise of personal assistants, task-oriented dialogue systems have received a surge in popularity
and acceptance. Task-oriented dialogue systems are characterized by a user goal which motivates the
interaction, e.g. booking a hotel, searching for a restaurant, or calling a taxi. The dialogue agent is
considered successful if it is able to fulfill the user goal by the end of the interaction. Traditionally, a
dialogue system is built using the divide and conquer approach, resulting in multiple modules that to-
gether form a dialogue system pipeline: a natural language understanding (NLU) module, a dialogue
state tracker (DST), a dialogue policy, and a natural language generation (NLG) module. Each module
has well-defined input and output, and can be trained using machine learning (Young et al., 2010; Thom-
son and Young, 2010; Williams, 2006; Henderson et al., 2013) provided that adequately labeled data is
available. However, there is a loss of information between the modules. The availability of powerful
deep learning methods has recently led to a surge in end-to-end training approaches (Bordes and Weston,
2017; Wen et al., 2017; Madotto et al., 2018), which aim to map user utterances directly to responses in
a sequence-to-sequence fashion.

Two fundamental properties of task-oriented systems are the ability to remember everything that is
important from the conversation so far – tracking, and the ability to produce a response that steers the
conversation towards successful task completion – planning. Within the modular approaches the role of
tracking is taken by the DST, optimized using supervised learning (SL), while the role of planning is
taken by the dialogue policy, optimized via reinforcement learning (RL). Unlike their modular counter-
parts, end-to-end systems typically only deploy SL, which relies on language modeling techniques that

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
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directly optimize the likelihood of the data under the model parameters, neglecting planning altogether.
This line of research has hugely benefited from large pre-trained transformer-based models such as BERT
and GPT-2 (Devlin et al., 2019; Radford et al., 2019; Hosseini-Asl et al., 2020; Peng et al., 2020).

Only few works in end-to-end task-oriented dialogue systems deploy RL (Mehri et al., 2019b; Zhao et
al., 2019). Word-level RL views each word of the entire system vocabulary as an action in a sequential de-
cision making process. This blows up the action space size and the trajectory length, hindering effective
learning and optimal convergence. The challenge of credit assignment and reward signal propagation
is further compounded by the typically sparse rewards in dialogue. Last but not least, simultaneously
optimizing language coherence and decision making within one model can lead to divergence. Thus,
effectively incorporating RL in the end-to-end setting remains a challenge.

In the recently proposed latent action reinforcement learning (LaRL), a latent space between the con-
text encoder and the response decoder serves as action space of the dialogue agent (Zhao et al., 2019).
Decoding responses conditioned on the latent variable has the benefit of decoupling action selection and
language generation, as well as shortening the dialogue trajectory, leading to improved performance.
However, this approach optimizes the latent space using an uninformed prior without taking into con-
sideration the actual distribution of the responses. Furthermore, the latent space model is conditioned
only on the context. Therefore it is unclear whether the latent variables truly encode the characteristics
of different dialogue actions, or whether it encodes the dialogue context instead. Because RL optimizes
action selection and planning, it is important that it is performed on an action-characterized space.

In this paper, we propose an unsupervised approach for optimizing the latent action representation for
end-to-end dialogue policy optimization with RL. Our contributions are as follows:

• We propose to optimize latent representations to be action-characterized. Action-characterized rep-
resentations encode similar actions close to each other and allow interpolation of actions. This leads
to a more practical and effective end-to-end RL.

• We explore three ways of leveraging an auxiliary task to shape the latent variable distribution; via
pre-training, to obtain an informed prior, and via multitask learning. As auxiliary task, we choose
response auto-encoding, as this captures generative factors of the dialogue responses. Unlike con-
temporary transformer-based approaches, this requires no additional data and has low computational
cost. Our analysis shows that the learned latent representations encode action-relevant information.

• We show that our approach achieves state-of-the-art match and success rates on the multi-domain
MultiWoZ 2.01 (Budzianowski et al., 2018).

This work acts as a proof of concept that we can induce an action-characterized latent space in an
unsupervised manner to facilitate more practical and effective RL. The overall performance could likely
be improved further by using more sophisticated encoding and decoding models, but this goes beyond
the scope of this work. The results obtained here already warrant a more wide-spread use of RL in
end-to-end dialogue models.

2 Related Work

Research in end-to-end task-oriented systems is largely inspired by the success of sequence-to-sequence
modeling for chat-oriented systems (Serban et al., 2016). Representation learning has been shown to be
useful for end-to-end systems, allowing more effective information extraction from the input. A common
method leverages pre-training objectives that are inspired by natural language processing tasks, e.g. next-
utterance retrieval (Lowe et al., 2016) and generation (Vinyals and Le, 2015). Naturally, this requires
sufficient amounts of additional data, and often labels. The choice of the pre-training objective has been
demonstrated to highly influence generalizability of the learned representation (Mehri et al., 2019a).

More recently, researchers have also investigated representation learning towards a better modeling of
dialogue response. For example, Zhao et al. (2020) have investigated the use of language modeling tasks

1The codebase is accessible at: https://gitlab.cs.uni-duesseldorf.de/general/dsml/lava-public.
We also achieve state-of-the-art results on MultiWoZ 2.1
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such as masking and sequence ordering for response generation. With variational models, latent space
that spans across domains can be induced using dialog context-response pairs as well as a set of response-
dialog act pairs (Zhao and Eskenazi, 2018). Similarly, dialogue context preceding and succeeding a
response can be used in a skip-thought fashion to train response embeddings (Zhao et al., 2018). It has
been reported that such representations allows few-shot domain adaptation using only raw dialog data
(Shalyminov et al., 2019). State labels and their transitions have also been utilized for learning action
representations (Huang et al., 2020). Performing RL on top of the learned latent variable space has been
shown to lead to a better policy compared to word-level RL, due to the condensed representation and
shorter trajectory (Zhao et al., 2019). While improvement on metrics such as task success and entity
recognition are reported, lack of interpretability and controllability remains a major challenge in this
family of models.

3 Preliminaries

In an end-to-end framework, dialogue policy optimization with RL typically consists of two steps: SL
and policy gradient RL. In the SL step, the model learns to generate a response x based on some dialogue
context c, updating its parameters θ to maximize the log likelihood of the data,

LSL(θ) = Ex,c[log pθ(x|c)]. (1)

Subsequently, the RL step updates the model parameter w.r.t. the task-specific goal, reflected as a reward.
In a dialogue with T steps, for a specific time-step t, immediate reward rt, and discount factor γ ∈ [0, 1],
the discounted return is defined as Rt =

∑T
k=t γ

k−trk. The model tries to maximize the expected return
from the first time-step onwards, written as J(θ) = Eθ[

∑T
t=0 γ

trt].
In word-level RL, every output word is treated as an action step, yielding the following policy gradient:

∇θJ(θ) = Eθ[
T∑
t=0

Ut∑
j=0

Rtj∇θ log pθ(wtj |w<tj , ct)] (2)

where T is the total number of turns in the dialogue, Ut is the total number of tokens in the response at
turn t and j is the index of each token w. Rtj denotes the discounted return of the j-th token at turn t.
In this policy gradient form, the action space is the vocabulary size of the system |V |, and the trajectory
length is

∑t=T
t=0 Ut, making RL in this space extremely challenging.

The introduction of a latent variable z allows us to factorize the conditional distribution into p(x|c) =
p(x|z)p(z|c). By treating the latent space z as the action space, the action space size and trajectory length
are reduced (Zhao et al., 2019). For a dialogue with T turns, policy gradient is now given by

∇θJ(θ) = Eθ[
T∑
t=0

Rt∇θ log pθ(zt|ct)], (3)

where Rt denotes the discounted return at turn t. Zhao et al. (2019) have examined two types of latent
variables; categorical and continuous. The categorical latent variable takes form as M independent K-
way categorical random variables, while the continuous one is modeled as M dimensional multivariate
Gaussian distribution with a diagonal covariance matrix. The latent variable distribution is learned during
the SL step using stochastic variational inference by maximizing the evidence lowerbound (ELBO) – the
lowerbound on the data log likelihood,

Lfull(θ) = Eqθ(z|x,c)[log pθ(x|z)]− DKL[qθ(z|x, c)||pθ(z|c)]. (4)

To combat exposure bias, Zhao et al. (2019) introduced a “lite” version of ELBO by assuming the
posterior qθ(z|x, c) to be the same as the encoder pθ(z|c). This eliminates the second term of the ELBO
objective. To counter overfitting, the posterior is regularized with some weight β to be similar to certain
priors, in this case a uniform distribution for categorical latent variables, or a normal distribution for
continuous ones. The “lite” ELBO objective has been shown to outperform the full ELBO objective, and
is written as:

Llite(θ) = Epθ(z|c)[log pθ(x|z)]− βDKL[pθ(z|c)||p(z)]. (5)
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Figure 1: We aim to train an action-characterized distribution of latent variables Z to support RL in an
end-to-end setting. a) VAE pre-training, b) new encoder is initialized and connected to the pre-trained
Z and VAE decoder. Overall fine-tuning optimizes the entire network (LAVA ptA), while selective fine-
tuning optimizes only the new encoder (LAVA ptS), c) new encoder is initialized and used in tandem with
VAE encoder to obtain informative prior (LAVA kl). The same architecture is also used for multitask
learning (LAVA mt), where we optimize for both tasks at the same time from scratch.

4 Latent Action Space via Auxiliary Task

As evidenced in Equation (3), to facilitate an effective learning it is important that the policy is trained
using latent variables z that meaningfully represent actions. However, because existing methods model
the distribution of z w.r.t. the context c (Equation (5)), we suspect that the latent variable is rather a
representation of the state space instead of the action space. Furthermore, the distribution is regularized
using an uninformed prior and without taking into account the actual distributions regarding dialogue
responses for a given context. To induce a more action-like latent representations, we train the model
on an auxiliary task that requires knowledge of responses to perform. We chose response auto-encoding
(AE) as the auxiliary task using the variational auto-encoding (VAE) model. That is, given a response
x we train the model to reconstruct the response via a latent space between the encoder and decoder
(Figure 1a). With an uninformed prior p(z), the pre-training objective for a set of parameters φ is:

Lvae(φ) = Eqφ(z|x)[log pφ(x|z)]− DKL[qφ(z|x)||p(z)]. (6)

VAE models have been shown to be able to capture generative aspects of the samples they are trained
on, resulting in good interpolation between latent variables (Kingma and Welling, 2014; Bowman et al.,
2016). By training a VAE on dialogue responses, we aim to capture generative aspects of responses such
as intent and domain information in an unsupervised manner.

We propose to utilize the VAE latent representations to condition dialogue systems to map encoded
dialogue states to latent actions, instead of learning latent representations of the dialogue states. We call
this approach LAVA (Latent Action via VAE). We explore three ways of leveraging the AE task to induce
action-characterized latent variable distributions: as pre-training, as informed prior, and in a multitask
learning fashion – pictured in Figure 1. Note that it is possible to swap the AE task with other tasks that
target representation learning on the dialogue responses. In this work we utilize simple recurrent models
as encoder and decoder to highlight the role of the latent dialogue action space. This allows us to pin any
observed improvements on the latent space and dialogue policy. Other parts of the end-to-end dialogue
system framework, such as encoding and decoding, are not within the scope of this work.

4.1 Auxiliary Task as Pre-training
The first method utilizes the auxiliary AE task to pre-train the latent representation and decoder (Fig-
ure 1b). Since the vocabularies of user and system turns vastly differ, a new dialogue system encoder for
response generation (RG) is initialized and the VAE encoder is discarded. The new encoder is connected
to the latent space and the decoder of the VAE. We experiment with two kinds of fine-tuning scheme:
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overall (LAVA ptA) and selective (LAVA ptS). With LAVA ptA, we update all parameters of the network
during fine-tuning. On the other hand, LAVA ptS blocks the gradient propagation to the latent space and
the decoder and exclusively trains the encoder. This is equivalent to utilizing the generation modules
from the VAE to serve as the NLG module, encouraging the model to focus on encoding the dialogue
state (similar to a state tracker) and mapping it to a corresponding latent action (similar to a policy)
during RG training. The loss function for both LAVA ptA and LAVA ptS is the “lite” ELBO ebjective
(Equation 5).

4.2 Auxiliary Task as an Informative Prior
Secondly, we explicitly train the RG latent variable distribution to be close to that of the VAE. We call
this set up LAVA kl. As before, we start with a pre-trained VAE and a newly initialized RG encoder.
We exploit the pre-trained latent representation in a novel way; the VAE encoder is not discarded and
instead used in tandem to obtain an informed prior of the target response, pictured in Figure 1c. We use
the latent distribution conditioned on the target qφ(z|x) in the KL term penalty, replacing the uninformed
prior used in previous works. This grounds the RG latent variable distribution to that of the VAE by
penalizing divergence, while still optimizing it to fit the dialogue contexts. All parameters except the
VAE encoder are further optimized with the following ELBO:

LLAVA kl(θ) = Epθ(z|c)[log pθ(x|z)]− βDKL[pθ(z|c)||qφ(z|x)]. (7)

4.3 Multitask Training between Main and Auxiliary Tasks
Lastly, we train a model to solve the RG and AE tasks in a multitask fashion, where RG is considered
as the main task and AE as the auxiliary task. Multitask learning aims to improve learning efficacy
by having a model solve multiple tasks at once, exploiting similarities across tasks (Caruana, 1997).
Recent works have shown that dialogue system tasks also benefit from multitask learning (Rastogi et al.,
2018; Zhu et al., 2019). RG and AE tasks are similar in that both aim to generate dialogue responses
x, but they differ in the context they consider, also called the many-to-one multitask setting (Luong et
al., 2015). RG attempts to generate the target response x given a dialogue context c, and AE tries to
perform reconstruction given a response x. The two tasks share the latent space and decoder with a
set of parameters ω but with separate encoders for RG and AE, with parameters θ and φ, respectively
(Figure 1c). The aim is that the latent representation encodes more action-characterized features, since
these are the common information required to fulfill both tasks. The two tasks are trained in an alternate
fashion with an A:B ratio, i.e. for every A iterations of the main task, we train with the auxiliary task for
B iterations. Unlike the previous methods, in multitask learning we start with a newly initialized model
without pre-training. Each encoder receives an update only from its corresponding task, while the latent
representation and decoder are trained on both tasks. The ELBO objectives are

LRG
LAVA mt(ω, θ) = Epθ(z|c)[log pω(x|z)]− βDKL[pθ(z|c)||p(z)], (8)

LAE
LAVA mt(ω, φ) = Eqφ(z|x)[log pω(x|z)]− βDKL[qφ(z|x)||p(z)]. (9)

5 Experiment Setup

5.1 Corpus, Task, and Training Setup
We use the MultiWOZ 2.0 corpus (Budzianowski et al., 2018) to test the performance of the models.
MultiWOZ is a collection of conversations between humans in a Wizard-of-Oz fashion, where one person
plays the role of a dialogue system and the other one a user. The user is tasked to find entities, e.g. a
restaurant or a hotel, that fit certain criteria by interacting with the dialogue system. The corpus simulates
a multi-domain task-oriented dialogue system interaction, i.e. multiple domains may occur in the same
dialogue or even the same turn. The corpus is fully annotated with a total of 10438 dialogues in English,
it is one of the most challenging and largest corpora of its kind. We use the training, validation, and
test set partitions provided in the corpus, amounting to 8438 dialogues for training, and 1000 each for
validation and testing. All numbers reported are based on evaluation on the test set.
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We aim to train a latent action representation that is effective for optimizing dialogue policies with
RL in an end-to-end setting. This goal is best reflected by completion of the underlying dialogue task,
measured in dialogue-level match and success rates. Match rate computes whether the criteria informed
by the user (informable slots) are matched by the system, and success rate computes whether information
requested by the user (requestable slots) are provided by the system. Match is a pre-requisite for a
successful dialogue. For a long time the research in dialogue policy has only looked at success rates and
user satisfaction (Lee and Eskénazi, 2012; Ultes et al., 2017), but as the line between policy and NLG
becomes blurred we see the introduction of metrics such as BLEU and perplexity. However, these have
been labeled early on to be potentially misleading as they correlate poorly with human judgement (Stent
et al., 2005; Liu et al., 2016). Although we also report BLEU score for completeness, note that our
methods are not targeted at improving BLEU.

We examine two tasks: 1) “dialogue context-to-response generation,” that is to generate the next di-
alogue response given dialogue history, as well as oracle dialogue state and database pointer from the
corpus. The dialogue state is a binary vector representation of the user goal as inferred from the begin-
ning of the dialogue up to the current turn. On the other hand, the database pointer is a binary vector
representation of the entity matching the criteria in the dialogue state. 2) “End-to-end modeling” which
takes only dialogue history for response generation. Works in end-to-end modeling typically utilize in-
termediate models in the pipeline to predict labels such as dialogue state and database pointer. In this
work we utilize the latent action in an end-to-end fashion without the use of any intermediate labels, en-
couraging the model to fully exploit the latent variables. All experiments are conducted on delexicalized
dialogues, where occurences of slot values are replaced with their corresponding slot tokens, for example
“in southern part of town” becomes “in [value area] part of town.”

Our training consists of two steps: techniques presented in Section 4, followed with RL using REIN-
FORCE. For a fair comparison with existing works, we adopt the novel RL setup proposed by Zhao et
al. (2019): 1) For each RL episode, sample a dialogue from the corpus. 2) Run the model to generate
a response for each system turn. However, the next user turn in the dialogue is not altered and simply
retrieved from the corpus. 3) Compute success rate of the dialogue based on system response and use
this as reward signal to compute policy gradient and update model parameters (Equation 3).

5.2 Model

Our primary focus are the latent representations induced by the proposed methods, their effect on rein-
forcement learning and the final performance of the model. To highlight the role of the latent dialogue
action space, we use simple recurrent models as encoder and decoder for both the VAE and the dialogue
system. We limit the model vocabulary to the most frequent 1000 tokens. We truncate the dialogue his-
tory to the last 2 turns for the context-to-response task, and the last 4 turns for the end-to-end modeling
task. For both AE and RG tasks, the encoder is a GRU-LSTM (Cho et al., 2014) with attention and size
300 which outputs a vector with size 600. We tested both categorical and continuous latent variables.
The categorical latent space is 10 independent 20-way categorical variables (M = 10, K = 20) and
the continuous space is set to size M = 200. In the categorical case, the decoder is of size 150 with
attention, and in the continuous case the decoder is of size 300. In choosing the hyperparameters, we
follow the experimental set up reported by Zhao et al. (2019). We tested a few different set-ups, for
example by varying the size of the latent space or the network, but found that the reported settings give
the most optimal performance. One exception is the weight β for the KL term, which we set to 0.01 for
all models other than LAVA kl, which performs best with 0.1. Multitask training ratio is set to 10:1.

Unlike transformer-based architectures, the training of our models are computationally light and fast.
One training takes between 1-3 hours using a single RTX 2080 GPU. While typical SL training requires
80-85 epochs with batch size of 128, LAVA kl converges in under 20 epochs. LAVA ptA, LAVA ptS, and
LAVA mt convergence varies at around 20-50 epochs. LAVA models likely benefit from the pre-trained
VAE models and is therefore able to converge faster.
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Model SL +RL
match succ. BLEU match succ. BLEU

LiteAttnCat* 65.77 57.26 0.18 83.68 78.18 0.12
LAVA ptA cat 70.57 58.56 0.18 85.09 77.08 0.12
LAVA ptS cat 64.56 54.65 0.19 83.48 79.87 0.12
LAVA kl cat 71.97 57.96 0.18 85.59 83.38 0.12
LAVA mt cat 60.46 51.05 0.18 84.88 80.98 0.10
LiteGauss* 68.27 57.06 0.19 75.88 66.47 0.14
LAVA ptA gauss 64.46 54.55 0.19 77.78 62.26 0.15
LAVA ptS gauss 67.37 53.85 0.18 77.78 61.76 0.13
LAVA kl gauss 68.87 58.66 0.19 79.28 64.96 0.09
LAVA mt gauss 59.42 49.33 0.19 82.78 70.37 0.14
Seq2Seq 58.66 52.25 0.20 81.58 75.18 0.15
SFN (Mehri et al., 2019b) 65.80 51.30 0.17 82.70 72.10 0.16
LiteAttnCat (Zhao et al., 2019) 67.97 57.36 0.19 82.80 79.20 0.12

Table 1: Best performance of our proposed methods in comparison with *reproduced and reported base-
lines methods that employ RL. Our best model LAVA kl cat surpasses the baselines in both match and
success rates.

Model Match Success BLEU Transformer RL
Human 90.40 82.28 - - -
SimpleTOD (Hosseini-Asl et al., 2020) 88.90 67.10 0.16 X -
ARDM (Wu et al., 2019) 87.40 72.80 0.20 X -
DAMD (Zhang et al., 2020) 89.20 77.90 0.18 X -
SOLOIST (Peng et al., 2020) 89.60 79.30 0.18 X -
MarCo (Wang et al., 2020b) 92.30 78.60 0.20 X -
HDNO (Wang et al., 2020a) 96.40 84.70 0.18 - X

LAVA kl cat + RL (ours) 97.50 94.80 0.12 - X

Table 2: Comparison of our best performing model with existing works on the same task. For a fair
comparison we adjust the performance of our best model by recalculating the match and success rates
using a modified script released in the MultiWoZ repository2. We also note whether the approaches
employ a transformer-based architecture and RL.

6 Experimental Results

6.1 Context-to-Response Generation

Table 1 presents the performance of our models in comparison with 1) sequence-to-sequence (Seq2Seq)
and structured fusion network (SFN) as baseline models that do not employ latent variables and 2) LaRL
models, LiteAttnCat and LiteGauss, which we reproduced using the public code (marked with *) (Zhao
et al., 2019). The Seq2Seq model shows best BLEU score compared to any of our models, however
its match and success rate are consistently lower than our categorical models. This is not surprising, as
Seq2Seq is optimized only to maximize the likelihood of the data. With the categorical latent variable,
training a model on top of the pre-trained VAE, either in a selective manner or not, improves dialog-
level performance. Using the VAE as informed prior gives us improvements on both match and success
rates while maintaining the BLEU score, resulting in our best performing model. Although we find
that continuous latent space is not as effective for RL, the proposed multitask training still surpasses the
LiteGauss baseline and gives the best performance when Gaussian latent space is utilized.

We also compare our best performing model with existing works tackling the same task. Unlike the
baseline models in Table 1, these works are evaluated with a new evaluation script recently published in
the official MultiWoZ repository. The new evaluation script differs to the original one in the treatment
of one specific case in the train domain, where a train matching user requirement is found but the user
does not request the train ID. The original script underestimates the model performance as the train ID is
checked regardless, while the new evaluation script do not check this further. For a fair comparison with
relevant state-of-the-art models, we re-compute the match and success rates of the model using the new
evaluation script. The numbers are reported in Table 2.
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Model labels dialog-level turn-level
dialogue state DB Search action match succ. BLEU

DAMD (Zhang et al., 2020) gen oracle gen 76.30 60.40 0.18
SimpleTOD (Hosseini-Asl et al., 2020) gen - gen 84.40 70.10 0.15
SOLOIST (Peng et al., 2020) gen gen - 85.50 72.90 0.16
LAVA kl cat + RL - - latent 91.80 81.80 0.12

Table 3: Comparison to state-of-the-art models on end-to-end generation task. Labels can come from the
corpus (oracle), prediction using supervised models (gen), or in our case from latent space (latent). Our
model is able to perform well without any additional labels by solely leveraging the latent variable.

We reach state-of-the-art inform and success rates, surpassing that of existing works which tackle the
same task and even human performance on the test set at 82.28%. This result demonstrates the advantage
of RL in the end-to-end setting. Optimizing for reward allows us to reach a higher success rate compared
to solely focusing on accurately generating the target response. Our reward definition only takes into
account the dialogue success rate, however because match is a prerequisite of dialogue success we are
able to harmoniously optimize both match and success rates during RL. It is also interesting to note that
our best model has higher match to success ratio compared to existing works, i.e. , we are able to achieve
success on most dialogue where match occurs, while existing works fail more often in providing user with
the information they require even when match already occurs. Moreover, unlike state-of-the-art models,
our end-to-end setting uses simple encoder-decoder models without explicit dialogue state tracking, and
therefore it is evident that the improvements are contributed by the latent action space. Combining our
methods with more powerful models would be straightforward and we expect it to further improve the
performance.

Notwithstanding, with regards to the very high performance, it is important to note the limitation of
the current evaluation set up, most importantly that the dialogue trajectory is only estimated, since the
user turn is obtained from data regardless of system response. To better gauge the performance in real
dialogue with humans, user evaluation needs to be conducted in the future.

6.2 End-to-End Generation
We also tested our latent action in a fully end-to-end fashion, i.e. without using dialogue state labels
and database pointers. Unlike existing works that train intermediate models for predicting labels such as
dialogue state and action, our aim is to rely solely on the latent variable for forming a dialogue policy.
We take our LAVA kl cat as pre-trained model, and further perform SL and RL exclusively with raw
dialogue data in an end-to-end setting.

We present the performance of our best model in comparison with existing works in Table 3, along
with the types of labels they utilize in the pipeline. Performance of these models are also computed with
the new evaluation script as in Table 2. Consistent with previous task, our model is outperforming the
other models in terms of success and inform rates. The result confirms that our model is able to optimize
its dialogue policy by leveraging action-relevant information that is encoded in the latent variable, e.g.
action type and domain, even in an extreme setting where no additional label is utilized in the pipeline.

7 Latent Space Analysis

7.1 Clustering Metrics and Projection
We investigate whether the latent variables are grouped together according to true action or domain
labels. One method is to quantify the quality of clusters that are formed in the latent space w.r.t. action
and domain labels. We use the Calinski-Harabasz index, which measures the ratio of the sum of between-
clusters dispersion and of inter-cluster dispersion for all clusters (Caliński and Harabasz, 1974). A higher
Calinski-Harabasz score relates to a model with better defined clusters2.

Table 4 compares the scores of the LAVA kl and LAVA mt methods with their corresponding repro-
duced LaRL baselines (Zhao et al., 2019). We observe that for all models domain labels are better
clustered than action, which is expected because 1) the amount of unique domains is much smaller than

2We note that extremely high scores could signal cluster overfitting. See Appendix B for more details.
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Model
Categorical Gaussian

SL RL SL RL
Domain Action Domain Action Domain Action Domain Action

LaRL* 93.19 23.30 121.15 17.50 47.86 13.04 71.49 13.25
LAVA kl 104.92 25.28 158.00 41.75 106.51 20.00 128.51 19.13
LAVA mt 25.37 6.64 247.92 16.85 66.54 16.91 80.09 18.50

Table 4: Clustering metrics scores ↑. Our LAVA kl cat and LAVA mt gauss show harmonious improve-
ment of domain and action clusters, as well as a nice balance between the domain and action scores.

that of actions, and 2) domain information is explicitly expressed at word level, while action is concerned
with the intent of the utterance. Note that since domain information is part of the action label, efficient
domain clustering is also beneficial for inferring actions. Performing RL on top of SL consistently im-
proves the clustering scores. However, in some cases improvement on domain clusters comes at the cost
of action cluster, e.g. categorical LaRL and LAVA kl gauss. We observe that good dialogue performance
aligns with harmonious improvement of domain and action clusters, as well as a nice balance between
the domain and action scores, as demonstrated by LAVA kl cat and LAVA mt gauss.

We visually assess the latent space by projecting the latent action of each input in the training set with
t-SNE (Maaten and Hinton, 2008) and analyzing the cluster that formed w.r.t. domain and action labels.
We compare our best proposed model LAVA kl cat with the baseline LiteAttnCat, before and after RL,
presented in Figure 2. While LiteAttnCat sees good domain cluster definition after SL and RL, it loses
some action cluster definition after RL. On the other hand, when training on the informed prior, we obtain
clusters that are tighter and farther apart from each other. Performing RL on top of SL moves the clusters
inwards and improves cluster definition without causing significant transformation of the latent space.
This indicates that the proposed method allows the model to put more focus on learning a dialogue policy
without having to radically modify the latent action representation. This also signals that the model is
equipped with an effective action space since the beginning of RL, which boosts learning.

(a) LAVA kl cat, domain (b) LAVA kl cat, action (c) LAVA kl cat+RL, domain (d) LAVA kl cat+RL, action

(e) LiteAttnCat*, domain (f) LiteAttnCat*, action (g) LiteAttnCat+RL*, domain (h) LiteAttnCat+RL*, action

Figure 2: LiteAttnCat* and LAVA kl cat latent space projection before and after RL. While LiteAttnCat
loses action cluster definition, our LAVA kl cat improves both domain and action clusters definition
without causing significant latent space transformation. Higher resolution version is in Appendix C.

7.2 Latent Variable Traversal
Latent variable traversal can be employed to qualitatively analyze the relationship between different
parts of the latent space. This is done by taking two points from the latent space, traversing the space
between them by interpolating intermediate variables, and generating a sample for each variable. A latent
space that meaningfully encode the generative factors would be able to produce reasonable samples with
gradating similarities to the opposite ends of the traversal.

We select two dialogue contexts where the target responses perform similar actions but in different
domains. Traversal of latent variables from LAVA kl cat and reproduced LiteAttnCat models for these
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LiteAttnCat*
yes, [hotel name] is a [value pricerange] -ly priced [value count] star guesthouse located in the [value area]. it is
[value pricerange] -ly priced and has [value count] stars . would you like to book a room?

sure, i can help you with that . what would you like to know?
i have the [hotel name] located at [hotel address]. would you like me to book it for you?
i have the [restaurant name] located at [restaurant address]. would you like to book a table?
the address is [restaurant address] and the phone number is [restaurant phone].
the [hotel name] is a [value count] star guesthouse in the [value area] area . it is [value pricerange] -ly priced and has free

wifi and parking . would you like me to book it for you?
i have booked you a taxi . it will be a [taxi type] and the contact number is [taxi phone].
LAVA kl cat
[hotel name] is a guesthouse in the [value area] area . it is [value pricerange] -ly priced and has [value count] stars
. would you like to book a room?

i would recommend [hotel name]. it s a [value count] star guesthouse in the [value area]. would you like to book a room?
the reference number for the train is [train reference].
i am sorry, i am not able to book that . i can book you a room at the [restaurant name] if you would like.
i am sorry, but i am unable to book it right now . is there anything else i can help you with?
i can book that for you now.

i have booked you a [taxi type]. the contact number is [taxi phone]. can i help you with anything else?

Table 5: Latent variable traversal between two responses with dialogue actions related to booking in
different domains. Traversal on LAVA kl cat shows smooth transition with consistent underlying action.

contexts is presented in Table 5. We observe that the proposed model is able to transition smoothly from
an inform and offerbook action in the hotel domain, to providing booking confirmation in the taxi domain.
On the other hand, latent representations trained without the support of VAE generate other actions in
the traversal, signaling that the action features are not encoded effectively in the latent representation. It
is also worthwhile to note that the two actions are closer to each other in the LAVA kl cat model, and
farther apart in the LiteAttnCat model. With LAVA kl cat, traversal after RL yields the same responses
while LiteAttnCat shows improved traversal. This echoes our previous analysis that the proposed method
is equipped with an action-characterized action space since the beginning of RL, which supports effective
and practical RL with end-to-end dialogue models.

8 Conclusion and Future Work

This work acts as proof of concept that we can induce action-characterized latent representations in an
unsupervised manner to facilitate a more practical and effective RL with end-to-end dialogue models. We
explore ways to obtain action-characterized latent representations via response variational auto-encoding,
which captures generative aspects of responses. Treating these latent representations as actions allows
effective optimization with RL. Unlike contemporary transformer-based approaches, our method requires
no additional data and has low computational cost. We are able to achieve state-of-the-art success rate on
the challenging MultiWoZ 2.0 corpus on both context-to-response generation as well as the end-to-end
modeling task. Our analyses show that the proposed methods result in latent representations that cluster
well w.r.t. domain and action labels, and encode similar actions close to each other. In this paper, we
utilize simple recurrent models to highlight the merit of the proposed training methods, which means
each component can be replaced with stronger models to further improve performance. We believe our
method has high potential for end-to-end domain adaptation and offline policy learning with RL. We look
forward to improve our work by utilizing longer context and performing RL in a stricter setting where
the dialogue trajectory is more accurately estimated. We would also like to conduct human evaluation
and analyze how our model performs in real dialogue interaction.
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Appendix

A Additional Results on MultiWoZ 2.1

For a more complete comparison with existing works, we report additional results of our best model. We
trained and tested LAVA kl cat + RL with MultiWoZ 2.1 dataset (Eric et al., 2019), and computed the
match and success rates of the model using a new evaluation script published in the official MultiWoZ
repository3. MultiWoZ 2.1 includes corrections to the dialogue state labels and canonicalization of the
slot values in the utterance, reducing the labeling error and typos introduced by human worker. As
previously explained, the new evaluation script differs to the old one in the treatment of one specific
case in the train domain, where a train matching user requirement is found but the user does not request
the train ID. The old script underestimates the model performance as the train ID is checked regardless,
while the new evaluation script do not check this further. The results are presented in Table 6. Training
and testing with MultiWoZ 2.1 yields lower match and success rates, however BLEU score is improved.
At the time of publication, our best model achieves state-of-the-art results.

Model Match Success BLEU Transformer RL
SimpleTOD (Hosseini-Asl et al., 2020) 85.10 73.50 0.16 X -
MarCo (Wang et al., 2020b) 92.50 77.80 0.19 X -
HDNO (Wang et al., 2020a) 92.80 83.00 0.18 - X

LAVA kl cat + RL (ours) 96.39 83.57 0.14 - X

Table 6: Comparison of our best performing model with existing works on MultiWoZ 2.1 data. We also
note whether the approaches employ a transformer-based architecture and RL.

B Cluster Overfitting and Its Relation to Calinski-Harabasz Index

For a dataset E of size nE and a center cE forming k clusters, with each cluster q of size nq consisting
of a centroid cq and a set of points Cq, the Calinski-Harabasz index CH is computed as

CH =
tr(Bk)

tr(Wk)
× nE − k

k − 1
, (10)

where

Wk =

k∑
q=1

∑
x∈Cq

(x− cq)(x− cq)T , (11)

Bk =

k∑
q=1

nq(cq − cE)(cq − cE)T , (12)

and tr(Bk) and tr(Wk) are the traces of the between-cluster dispersion and the inter-cluster dispersion,
respectively. It is evident that the smaller the inter-cluster dispersion, the higher the score will be. How-
ever in our experiements we find that high score could be a sign of cluster overfitting in the latent space,
that is when the clusters do not preserve enough variability of the target responses. For example, when
each domain is grouped into one small cluster and each cluster is placed far from each other, scoring
on domain labels may translate to extremely high values, yet this is not desired in practice as we would

3https://github.com/budzianowski/multiwoz



478

like the latent representation to capture within-cluster varieties as well, or maybe split one domain into
several clusters to better distinguish other action-relevant information. Furthermore, overfitting w.r.t.
domain label set typically means poor fit w.r.t. action labels. Figure 3 presents an example.

(a) LAVA kl cat + RL, domain. CH: 158.00 (b) LAVA kl cat + RL, action. CH: 41.75

(c) LAVA mt cat + RL, domain. CH: 247.92 (d) LAVA mt cat + RL, action. CH: 16.85

Figure 3: LAVA kl cat and LAVA mt cat latent space projection after RL and their resprective Calinski-
Harabasz scores (CH). All plots contain the same number of data points. Plots (c) and (d) show that
LAVA cat mt + RL groups the datapoints into fewer clusters, and while this yields high domain CH score,
the score for action clusters is low. On the other hand, although the domain CH is lower, LAVA kl cat
shows better clustering fit for both domain and action.

C High Resolution Plots

We reproduce the cluster projections from Figure 2 in high resolution, presented in Figure 4.
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(a) LAVA kl cat, domain (b) LAVA kl cat, action

(c) LAVA kl cat + RL, domain (d) LAVA kl cat + RL, action

(e) LiteAttnCat*, domain (f) LiteAttnCat*, action

(g) LiteAttnCat + RL*, domain (h) LiteAttnCat + RL*, action

Figure 4: LiteAttnCat* and LAVA kl cat latent space projection before and after RL. While LiteAttnCat
loses action cluster definition, our LAVA kl cat improves both domain and action clusters definition
without causing significant transformation of the latent space.


