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Abstract

The structural information of Knowledge Bases (KBs) has proven effective to Question Answer-
ing (QA). Previous studies rely on deep graph neural networks (GNNs) to capture rich struc-
tural information, which may not model node relations in particularly long distance due to over-
smoothing issue. To address this challenge, we propose a novel framework GlobalGraph, which
models long-distance node relations from two views: 1) Node type similarity: GlobalGraph as-
signs each node a global type label and models long-distance node relations through the global
type label similarity; 2) Correlation between nodes and questions: we learn similarity scores be-
tween nodes and the question, and model long-distance node relations through the sum score of
two nodes. We conduct extensive experiments on two widely used multi-hop KBQA datasets to
prove the effectiveness of our method.

1 Introduction

Knowledge bases have become critical resources in a variety of natural language processing appli-
cations. A KB such as Freebase (Bollacker et al., 2008) always contains millions of facts which are
composed of subject-predicate-object triples, also referred to as a relation between two entities. Such
rich structural information has proven effective in KB-based Question Answering (KBQA) tasks , which
aim to find the answer entities to a factoid question using facts in the targeting KB (Zhou et al., 2018;
Zhang et al., 2018).

Early studies on KBQA are mainly based on neural network models (Dong et al., 2015; Das et al.,
2017), which simulate the similarity between the factoid question and the entities in the KB. Although
these methods are effective, the structural information in the KB is not fully utilized, which is essential
in the reasoning process (Sun et al., 2018). To address this limitation, recent studies (Sun et al., 2019;
Xiong et al., 2019) focus on graph neural networks (GNNs), which update nodes by aggregating their
neighbor information in graphs. This updated pattern allows GNNs to capture structural information.
However, GNN is a special form of Laplacian smoothing (Li et al., 2018), stacking multiple GNN layers
may oversmooth features of nodes and reduce the discriminative power of graph embedding. With this
insufficiency, conventional GNNs are poor at modeling long-distance node relations, which is essential
for GNN reasoning. (Wu et al., 2019).

In this paper, to address the above limitations, we propose a novel framework GlobalGraph, which
models long-distance node relations from two views: 1) Modeling node relations by predicting whether
two nodes are of the same type label; 2) Modeling node relations by predicting whether two nodes are all
correlated with the question. For the 1st view, we assign global type labels for each node according to
its neighbor relation information, and then model the long-distance node relations by their global label
similarity. Relations contain node label information, and the relation information around the same type
nodes should be similar. For example, as shown in Figure 1, there are two triples: (N3, directed by,
N1) and (N4, directed by, N5). Based on the relation “directed by” in these two triples, we regard that
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Figure 1: a) We display the original graph with different types (shown with different colored edges) of
relations. Take a specific relation “directed by” as an example, we can infer that the type of N1 and
N5, which are connected to this relation, is “person”. So the two nodes are marked by the same color,
indicating that they have the same label. It is the same to N2 and N6, and N3 and N4. Through this
process, We assgin each node a global label through its neighbor relation set. It is worth noting that
the larger the neighbor relation set, the more confident the model is to infer the similairty of two nodes’
label. b) The confidence score is represented by the thickness of the dashed lines.

N1 is a person and the same as N5. Type labels of the two nodes are the same, so we connect the two
nodes. Based on the new graph, GNN propagates information across long-distance nodes. For the 2nd
view, only connect the same label nodes is insufficient, because a normal KB contains a huge number of
long-distance node pairs with different labels, which are not utilized for GNN reasoning. For a specific
node pair, although the node labels are not similar, if the two nodes are related to the question, the
information propagation between them is also useful for reasoning. Based on this, we dynamically select
nodes related to the current question, and construct a dynamic graph to connect these nodes through full
connection. Finally, we implement GNN to perform information propagation and reasoning. By solving
the two views, we model global node features through their long-distance nodes, and then combine them
with the local node features of conventional GNNs to perform answer prediction.

The main contributions of this paper can be summarized as follows:

• We propose a novel idea to assign type labels to nodes based on their neighbor relation information,
and introduce a novel model to enable GNNs to capture long-distance node information from two
views: 1) node type similarity; 2) correlation between nodes and questions, which overcomes the
shallow node representation in GNNs.

• We conduct extensive experiments on MetaQA (Zhang et al., 2018) and PQL (Zhou et al., 2018),
and the results demonstrate the effectiveness of our model.

2 Related Work

2.1 Neural Network-based Question Answering

The KBQA based on the neural network can be divided into two categories: single-hop QA and multi-
hop QA. Single-hop models (Bordes et al., 2014; Xu et al., 2016) predict the answer from one fact triple,
which can be retrieved by judging the similarity between the question and relations in triples. Although
these models have good performance in answer prediction, they are insufficient in multi-hop QA tasks.
Because mutli-hop QA task contains complex questions, which requires reasoning across multiple triples
to get answers. To perform reasoning, Jiang and Bansal (2019) proposes a self-assembling network to
assemble the reasoning modules; Yavuz et al. (2017) considers a continuous checking mechanism to
judge the correctness of answer evidence; Zhang et al. (2018) utilizes the variational learning algorithm
for multi-hop reasoning; Wang et al. (2019b) explores additional knowledge bases to improve natural
language inference; Mitra et al. (2019) translates the question and the KB to a logical representation and
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then uses logical reasoning. However, these models lack considering graph structural information, which
is important for multi-hop reasoning.

2.2 Graph Neural Networks based Question Answering

Supported with a number of studies on graph representation learning (Kipf and Welling, 2017;
Schlichtkrull et al., 2018; Wang et al., 2019a), graph neural network (GNN) shows its powerful ability in
graph analysis. A massive number of GNN-based algorithms are designed to perform graph reasoning,
such as R-GCN (Schlichtkrull et al., 2018), GRAFT-Net (Sun et al., 2018), HGMAN (Wang et al., 2020)
and BAG (Cao et al., 2019), in which nodes update themselves by aggregating the information of neigh-
boring nodes. A node can capture the unconnected node information through multiple GNN layers. Since
GNN is a special form of Laplacian smoothing, stack multiple GNN layers may oversmooth features of
nodes from different clusters and reduce the discriminative power of graph embedding (Li et al., 2018).
Therefore, most GNN models have less than two layers. Due to limited-layer information propagation,
conventional GNNs suffer from bad performance in modeling long-distance node relations. Xiao et al.
(2019) and Zhuang and Ma (2018) attempt to model long-distance node relations under the guidance of
pre-defined node type labels. However, for most datasets of KBQA, pre-defined node type labels are not
provided. which makes the above methods not applicable. Different from the previous work, we first
assign a global label to each node by modeling its surrounding relation structure, and further gain the
long-distance node relations based on the global labels.

3 Model

Conventional GNNs 

Information Propagation

+

Answer Prediction
(a) Source Graph

(b) Model Global

Node Labels

(c) Information 

Propagation Based on 

Label Similarity

(d) Information 

Propagation Based on 

Question-Aware subgraph

Model Long-distance Node Relations

Figure 2: Overview of the model. a) The source graph without node labels. b) We assign a global label to
each node based on the connected relations. c) The information propagation based on label similarity. d)
The information propagation based on question-aware subgraph. Through (b, c, d), the model outputs the
long-distance propagation results. We combine it with Conventional GNNs Information Propagation
results to predict the answers.

3.1 Task Definition

Let K = (V, E ,R) denotes a knowledge graph, where V is the set of entities and R is the set of
relations in KB. E consists of a set of triples (eh, r, et), which represent the relation r ∈ R holds between
eh ∈ V and et ∈ V . Given a natural language question Q = (w1, w2, ..., w|q|), where wi denotes the ith
word, the model needs to extract its answer from V , The overview of our models is shown in Figure 2.

The rest of the Model Section is organized as follows: Subsection 3.2 discusses how to encode the
factoid question and knowledge graph. Subsection 3.3 describes the information propagation method of
conventional GNNs. Subsection 3.4.1 and 3.4.2 discuss how to assign global type labels to each node
and propagate information among nodes with similar labels. Subsection 3.4.3 explains the construction
of question-aware dynamic graph. Finally, subsection 3.5 discusses the answer prediction.
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3.2 Input Encoder
The input encoder initializes the given natural language question and all the candidate entities (in KB)

to vector representation.
Question Initialization. We pass word sequence of the question Q to a long short-term memory

network (LSTM) (Hochreiter and Schmidhuber, 1997):

q = LSTM(Q), (1)

where q ∈ Rm is the last state of LSTM output. m is the hidden state size. We use q to represent the
question.

Node Initialization. Firstly, all of the nodes are represented by pre-trained word vectors or random
initialized vectors. For node ev, it is noted as wv ∈ Rn, where n is the embedding size. The seed
nodes are nodes that can be connected to the question through entity linking (Sun et al., 2018). The input
encoder also embeds the average distance from the node ev to the seed nodes, as dv ∈ Rn. For simplicity,
dv can be represented with the embedding of words “0”, “1”, “2”, etc. With the distance embedding dv
and word embedding wv, the node ev is represented as nv, which is defined as:

nv = [wv; dv]W
N , nv ∈ Rn, (2)

where [;] is column-wise concatenation and WN ∈ R2n×n is a learned parameter matrix. By adding
distance information, nodes can better update themselves according to the number of hops needed to
infer the answers to the current question.

3.3 Conventional GNNs Information Propagation
Similar to previous works (Sun et al., 2018; Xiong et al., 2019), we implement conventional GNNs

methods to capture local information. A node catches its local information by aggregating the informa-
tion of its real neighbors in the source graph.

To enable each node to capture the current question information, we concatenate each node repre-
sentation nv with the question q, which is defined as h0v = [nv; q], and then the node updates itself by
aggregating its neighbors’ information, which is defined as:

ul+1
v = σ

(∑
r∈R

∑
j∈Nr

v

1

cv,r
W l

rh
l
j

)
, (3)

whereN r
v represents the set of neighbor indices of node v based on relation r ∈ R. cv,r is a normalization

constant that can be learned or set directly, such as cv,r = |N r
v |. W l

r ∈ Rdl+1×dl stands for a learnable
parameter matrix. 0 ≤ l < L and L is the number of layers in the model. hlj denotes the hidden state of
node ej at the lth layer.

A gate mechanism decides how much of the update message ul+1
v propagates to the next layer. Gate

levels are computed as:

al+1
v = σ

(
fa

(
[ul+1

v ;hlv]

))
, (4)

where fa is a linear function. Ultimately, the next layer representation hl+1
v of the node ev is a gated

combination of the previous representation hlv and a non-linear transformation of the update information
ul+1
v :

hl+1
v = φ(ul+1

v )� al+1
v + hlv � (1− al+1

v ), (5)

where φ(·) is any nonlinear function and � stands for element-wise multiplication.
The model stacks such networks for L layers. Through L times’ convolution operation, the node

constantly updates its own state, which simulates the reasoning process. Finally, we get the node rep-
resentation hLv . However, such GNNs can not propagate information between two long-distance nodes
due to limited-layer. To overcome this challenge, in the next section, we introduce how to capture the
long-distance node relations and propagate information based on them.



2576

3.4 Model Long-distance Node Relations
3.4.1 Model Global Node Type Labels

In this section, we introduce how to build a global label for a node according to its connection relation
information, which is based on the relation information implying the connected node type. For example,
in the field of movies, for a specific triple (N1, directed by, N2) whose relation is “directed by”, it can be
retrieved that N2 is a person and N1 is a movie. It is the same for another triple (N3, directed by, N4).
From the results, we get that N2 and N4 belong to the same type label. Similar to the above process, we
first collect the connection relation set of each node ev, which is defined as:

Setv = (Setinv , Set
out
v ), (6)

where Setinv means the set of relations pointing to node ev and Setoutv represents the set of relations
pointing out from node ev. The reason we need to take into account the relation direction is that, with
the above example, although N1 and N2 are both connected with relation “directed by”, their labels are
obviously different. Finally, we regard the Setv as the global type label of node ev.

3.4.2 Information Propagation Based on Label Similarity
With the global node type label, we calculate the similarity sij between two nodes, which is defined

as:

sij = sim(Seti, Setj) (7)

sim(Seti, Setj) =
f(Setini , Set

in
j ) + f(Setouti , Setoutj )

2
(8)

f(Setini , Set
in
j ) =

len(Setini ∩ Setinj )

min(len(Setini ), len(Setinj ))
(9)

where ∗ ∩ ∗ represents the intersection of two sets. len(∗) means the number of elements in the set.
Finally, we get the node similarity matrix S ∈ R|V |×|V |, where |V | means the number of nodes.

Based on the node similarity matrix S, similar to Equation 3, we use graph convolutional network
(GCN) to perform information propagation, which is defined as:

gl+1
v = σ

( |V |∑
j=1

svjW
ltlj

)
, (10)

where tlj denotes the hidden state of node ej at the lth layer and t0j = nj (Equation 2). The update
message gl+1

v pass through the gate mechanism (similar to Equation 4,5) to get the current layer repre-
sentation tlv. The model stacks such networks for K layers. Finally, we get the last layer representation
tKv of the node ev.

3.4.3 Information Propagation Based on Dynamic Question-aware Subgraph
In the above section, we consider that node pairs with higher label similarity have relations. However,

although low label similarity, some node pairs are related to the current question. The information
propagation between them can play a positive role in predicting answers. In this section, we first select
the nodes related to the factoid question, and then link these nodes by full connection to construct a
dynamic question-aware graph. With the dynamic graph, the model performs information propagation
to capture question-related information.

We first get the representation of node ev, which is defined as:

m0
v = tKv W, (11)

where W stands for a learnable parameter matrix. The similarity between node ev and question Q is
calculated as:

sqlv = σ(ml
vWql), (12)
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where q0 = q and it is updated by summing the seed nodes’ vectors of the (l − 1)th layer. sqlv ∈ [0, 1]
represents the similarity confidence. We select the nodes whose sqlv is greater than the threshold tq and
then construct the node set. Then we connect the nodes in the collected set by full connection to construct
the question-aware dynamic graph. In the dynamic graph, the edge weight between node ei and node ej
is the average of sqli and sqlj .

Similar to Equation 10, we perform GCN on the dynamic graph and stack such graphs for J layers.
Finally, we get the last layer representation mJ

v of the node ev.

3.5 Answer Prediction
We concatenate the entity representation of local propagation results hLv and global propagation results

mJ
v and pass through a linear layer fout to predict the answer distribution, which is defined as:

pv = σ(fout([h
L
v ;m

J
v ])), (13)

where σ is the sigmod function. fout converts the dimension to 1.

3.6 Loss
The training loss is binary cross-entropy loss of the final answers prediction, which is defined as:

L(θ) = −
n∑

i=1

[yilog(pi) + (1− yi)log(1− pi)], (14)

where θ represents the model parameters, y is the golden distribution over entities, and n is the number
of nodes.

4 Experiments

4.1 Datasets
MetaQA (Zhang et al., 2018) is composed of three sets of question-answer pairs in natural language

form (1-Hop, 2-Hop, and 3-Hop) and a movie domain knowledge base. It contains three versions of ques-
tions (Vanilla, NTM, and Audio). In our experiments, we use the ”Vanilla” version and do performance
analysis in three sets of different hops.

PQL (PathQuestion-Large) (Zhou et al., 2018) is a multi-hop KBQA dataset. The dataset consists
of 2-Hop (PQL-2H) questions and 3-Hop (PQL-3H) questions.

Entity linking is performed on these two datasets. We follow Xiong et al. (2019) and utilize the simple
surface-level matching to make fair comparisons. The statistics of the two datasets are shown in Table 1.

4.2 Baselines
We compare our proposed model with the following models:
(1) Key-Value Memory Network (KVMem) (Miller et al., 2016), an end-to-end memory network

that can be used for KBQA. (2) IRN (Zhou et al., 2018), an interpretable reasoning model for knowledge
graph question answering. (3) VRN (Zhang et al., 2018), an end-to-end variational learning algorithm,
which not only addresses the noise in questions but also performs effective multi-hop reasoning. (4)
GraftNet (Sun et al., 2018), a model which treats documents as a special genre of nodes in KB and
utilizes graph convolution network to aggregate the information. (5) SGReader (Xiong et al., 2019),
a model that aims to solve the incomplete knowledge graph by utilizing text information, applying a
graph-attention to aggregate the information of each entity from its linked neighbors.

4.3 Training Details
We run the experiments on a P40 GPU with 24G memory. Throughout the experiments, for all of the
baselines and the proposed model, we apply the 300-dimension TransE embeddings (Bordes et al., 2013)
to initialize entity states and 300-dimension GloVE embeddings (Pennington et al., 2014) to initialize
word states in questions. The hidden dimension of the LSTM is 300. The hidden dimension of all GCN
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Datasets Train Dev Test Entity Relation

MetaQA
1-Hop 96106 9992 9947

40128 92-Hop 118980 14872 14872
3-Hop 114196 14274 14274

PQL
2-Hop 1434 160 160

5035 364
3-Hop 925 103 103

Table 1: The statistics of the MetaQA and the PQL. We show the size of Train, Dev, and Test set of the
two datasets, as well as the total number of entities and relations.

Model
MetaQA 1-Hop MetaQA 2-Hop MetaQA 3-Hop
Hits@1 F1 Hits@1 F1 Hits@1 F1

KVMem 0.958 - 0.760 - 0.489 -
VRN 0.978 - 0.898 - 0.630 -

SGReader 0.967 0.960 0.807 0.798 0.610 0.580
GraftNet 0.974 0.910 0.948 0.727 0.778 0.561

GlobalGraph 0.990 0.976 0.955 0.830 0.814 0.624

Table 2: Experimental results on the MetaQA datasets.

layers is 300. The layer number is 1 for all GCNs in our model, and the dropout after each GCN layer is
set to 0.1. The Adam optimizer (Kingma and Ba, 2015) is used with the initial learning rate of 0.001.

To make fair comparisons, We follow Sun et al. (2018; Xiong et al. (2019) and apply the Personalized
PageRank algorithm (Haveliwala, 2002) on the MetaQA dataset to pick the top N entities to get a smaller
subgraph. After PageRank algorithm, for each subgraph on 1-hop, 2-hop and 3-hop datasets, there are
an average of 6, 35, and 495 entities respectively

4.4 Main Results and Discussion

Table 2 depicts the comparisons with state-of-the-art models on the MetaQA dataset. As shown in
Table 2, our model achieves the best Hits@1 and F1. Specifically, on the MetaQA 1-Hop, our model
improves Hits@1 and F1 by 1.2% and 1.6% respectively, and on the MetaQA 2-Hop dataset, our model
is 0.7% and 3.2% higher than the second best one on Hits@1 and F1 respectively. Similarly, our model
has achieved the best performance on MetsQA 3-Hop.

We show the experimental results on the PQL dataset in Table 3. PQL dataset has the feature that
each question has only one answer, so we only adopt Hits@1 for evaluation. On the Hits@1 metric,
we observe that our model achieves the best results, improving 3.5% and 2.8% on 2-Hop and 3-Hop,
respectively.

The reasons why our method performs well include: 1) Our method considers using graph neural
network (GNN) to model the structural information of knowledge graph, which aims to enhance the
reasoning ability; 2) Our idea can catch the long-distance node similarity by modeling the labels of
each node, which is not considered in previous GNN-based KBQA models; 3) Our model captures more
question-related information by constructing the question-aware dynamic graph.

4.5 Ablation Experiment

We compare our model with a few variants. R-GCN (Schlichtkrull et al., 2018) considers the influence
of different types of connected relations when aggregating neighbors’ information. GAT (Velickovic et
al., 2018) implements the weight-based neighbor aggregation method. In the experiment, we combine
R-GCN and GAT, and name it as R-GAT. R-GAT and R-GCN fail to consider the long-distance node
relations, and only perform information propagation based on the real neighbors of nodes. As shown
in Table 4, we can find that our model has achieved the best performance, and the biggest difference
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Model
PQL 2-Hop PQL 3-Hop

Hits@1 Hits@1
KVMem 0.622 0.674

IRN 0.725 0.710
SGReader 0.719 0.893
GraftNet 0.707 0.913

GlobalGraph 0.760 0.941

Table 3: Experimental results on the PQL
datasets.

Model
PQL 3-Hop MetaQA 2-Hop

Hits@1 Hits@1
R-GCN 0.859 0.920
R-GAT 0.890 0.941
GlobalGraph 0.941 0.955
- q-aware subgraph 0.932 0.950
- label similarity 0.920 0.943

Table 4: Ablation experiments of our model on PQL
and MetaQA dataset.

Figure 3: Performance using varying thresholds tq on different datasets. The number of thresholds is
ranging from 0 to 0.8.

between our model and these two models lie in considering long-distance node relations, which proves
the effectiveness of our proposed model.

we conduct experiments to evaluate the performance of different components in our model. Glob-
alGraph w/o q-aware subgraph does not consider constructing the question-aware subgraph. Glob-
alGraph w/o label similarity does not consider propagating information between two nodes with the
same label, which only performs local and question-aware information propagation. As shown in Table 4,
without these components, the performance of the model has declined, which proves the effectiveness of
these two components in our model.

4.6 Analysis of Question-Aware Graph
In the proposed model, we construct a question-aware dynamic graph to enhance the relevance be-

tween nodes and the given question. In this section, we analyze the effectiveness of this method by
showing the model performance of different threshold values tq. As shown in Figure 3, if the threshold
is set too low (threshold=0), we can find that the model performance reduces, probably because there
are too many question-irrelevant nodes in the graph. The information propagation between these nodes
will reduce the reasoning performance. With the increase of threshold (from 0 to 0.8), the performance
of the model is increasing, which proves the validity of the question-aware subgraph. If the threshold
is too large (threshold=0.8), the performance of the model is also reduced because too many nodes are
discarded, resulting in the information loss.

4.7 Case Study of Modeling Long-distance Node Similarity
In order to prove the validity of modeling long-distance node similarity based on the global labels, we

give examples from PQL 3-Hop. As shown in Figure 4 (b), it contains the adjacency matrix of the real
graph and the similarity matrix of node labels.
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KBs:

[believe, album, believe]

[believe, song, believe]

[pulse, track, believe]

[believe, releases, manic_moonlight]

[greatest_hits, genre, gangsta_rap]

[believe, track, believe]

[transistor_rhythm, track, believe]

[greatest_hits, album_content_type, 

compilation_album]

[believe, release, the breakout_trilogy]

[greatest_hits, track, 

all_the_same_things]

[lonely_house, track, believe]

[greatest_hits, track, i_miss_you]

[believe, release, greatest_hits]

[transmisson, track, pulse]

[greatest_hits, release_type, album]

[believe, recording, believe]

[trax_classix, track, pulse]

[believe, artist, ministers_de-la_funk]

For example: All the red entities in 

KB have an edge which is  named  

as "track" and point out. Our 

model suggests that these red 

entities have the same global label

Long-distance 

Node Similarity

E
x
a
m

p
le (a

)

Example (b)

Figure 4: Example (a) and Example (b) display two KB examples respectively, in which the left heatmap
is the original adjacency matrix, and the right heatmap is the constructed long-distance node relations.
Deep color means a strong correlation between two nodes. From the comparison of two heatmaps in an
example, we find that the constructed relation matrix can capture the long-distance node relations.

From the adjacency matrix of the real graph, we find that node “pulse” and node “i miss you” are
not connected. However, the labels of them are the same, which can be obtained by their surrounding
relations in the given KB. This relation is captured correctly by the similarity matrix, which proves the
validity of our methods. Figure 4 (a) is a specific knowledge graph, because all nodes are connected
to only one node. In this case, the relations between other nodes can not be captured. By using the
constructed similarity matrix, we can capture more abundant relation information.

5 Conclusion

In this paper, we propose a novel KBQA model based on graph neural network, which can capture
long-distance node relations by modeling the relation features of each node and further judge the feature
similarity. Moreover, our model constructs a dynamic question-aware subgraph, retains the nodes related
to the question, and propagates messages on these nodes to improve the reasoning ability. Experiments
based on two open datasets demonstrate our model’s ability on performing answer prediction. Ablation
experiments prove the validity of each part of the model. Case study demonstrates our model’s ability
to capture long-distance node relations. In the future,we will explore other ways to capture the relation
between distant nodes and improve the current proposed model.
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