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Abstract
Cultural institutions such as galleries, libraries, archives and museums continue to make commitments to large scale digitization of
collections. An ongoing challenge is how to increase discovery and access through structured data and the semantic web. In this paper
we describe a method for using computer vision algorithms that automatically detect regions of “stuff”—such as the sky, water, and
roads—to produce rich and accurate structured data triples for describing the content of historic photography. We apply our method to a
collection of 1610 documentary photographs produced in the 1930s and 1940 by the FSA-OWI division of the U.S. federal government.
Manual verification of the extracted annotations yields an accuracy rate of 97.5%, compared to 70.7% for relations extracted from
object detection and 31.5% for automatically generated captions. Our method also produces a rich set of features, providing more
unique labels (1170) than either the captions (1040) or object detection (178) methods. We conclude by describing directions for a
linguistically-focused ontology of region categories that can better enrich historical image data. Open source code and the extracted
metadata from our corpus are made available as external resources.
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1. Introduction

Galleries, libraries, archives, and museums (known as
GLAM institutions) and other cultural heritage organiza-
tions have increasingly sought to provide structured meta-
data about historic collections in an effort to increase ac-
cess and discovery. Where records have been digitized and
rights restrictions allow for it, many of these organizations
have also been able to make the digital records directly ac-
cessible through openly available APIs and URIs. Promi-
nent examples of these efforts include the Rijksmuseum’s
RijksData (Dijkshoorn et al., 2018), Europeana’s Search
API, Record API, and SPARQL endpoint (Concordia et al.,
2009), and the Linked Data Service provided by the United
States Library of Congress (Zimmer, 2015). The effort to
make resources available within a cohesive semantic web
offers exciting possibilities for research and public access
to cultural collections. Yet, challenges remain for produc-
ing structured data that facilitates access and exploration of
digital archives.

Many digital collections held by cultural heritage organiza-
tions consist of still and moving image data. These include
scans of textual documents, photographs of material cul-
ture, and digital scans of artwork, photographs and other
visual objects. Unlike machine-readable textual archives,
visual collections do not immediately offer a simple method
for automated search or data extraction. While records may
include extensive metadata about the provenance of a digi-
tal image, there is often little to no structured data pertain-
ing to the content of the image itself. Even when descriptive
captions exist, these are typically short and intended to be
read alongside the object itself. In other words, captions
are written assuming that the reader will be able to look
at the object. The lack of structured linguistic descriptions

serves as a roadblock to providing rich links between and
across collections, as well as limiting the possibilities for
large-scale analysis. While expert and crowd-sourced an-
notations can fill in some gaps, manual data construction
requires extensive resources and becomes more difficult as
digitized datasets increase in size (Seitsonen, 2017).

Computer vision techniques provide a direction for the au-
tomated creation of structured data to enrich collections of
historic digital images. Machine learning techniques can
detect features present in images and store these alongside
human-generated metadata pertaining to the digital records.
However, the use of automated techniques have their own
unique set of challenges. Most computer vision algorithms
are built using modern datasets, and may produce annota-
tions that are inaccurate or inappropriate for historic data.
Incorrectly extracted data records are particularly concern-
ing when making data available to the public. Even when
including confidence scores for extracted features, studies
have shown that people have trouble accurately interpreting
probabilistic data and are overly confident in predictions
(Khaw et al., 2019). The challenges of mis-classified data
are particularly acute when they risk reinforcing racial, gen-
der, and socioeconomic biases inherent in the training data
behind machine learning techniques. For example, a re-
cent study showed that face detection algorithms have dif-
ficulty identifying darker skinned individuals (Buolamwini
and Gebru, 2018). Applying state-of-the-art face detection
algorithms to a collection of photographs, therefore, risks
further hiding marginalized communities.

In this article we present a method for the automated extrac-
tion of highly-accurate structured data describing the con-
tent of historic photography using computer vision algo-
rithms. Specifically, our approach is based on the detection
of regions of the image containing elements described as
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Figure 1: Automatically generated labels assigned to FSA-OWI color photographs by the Mask R-CNN instance object
classification algorithm (X101-FPN) (Wu et al., 2019). For each of the eight selected object types, the five images from the
FSA-OWI color photographs that are most predicted to contain the given category are shown. All categories were estimated
to exist with probability greater than 80%. The plane and horse categories seem to have correctly identified the objects in
their five respective images, and two of the cow images are in fact cows (the others are horses). The remaining categories
seem to be all false detections. Many mistakes are hard to explain, such as the row of skateboard objects.
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Figure 2: Three detected captions for three FSA-OWI photographs using the ‘Show, attend and tell’ model (Xu et al., 2015).
The first provides a caption that matches the image and the third produces a caption that is very similar to the image. The
second correctly identifies the subject of a woman in the frame but mistakenly believes she is holding a microphone. The
final image produces an annotation that incorrectly labels the people as giraffes.

“stuff”, which includes elements such as sky, water, trees,
grass, and roads (Caesar et al., 2018). While temporal, cul-
tural, and regional differences exist in some of these cate-
gories, the stuff-based regions of images are significantly
more robust than many other features that can currently be
extracted from image data.

We focus on the application of our method to the 1610
color photographs from the Farm Security Administration-
Office of War Information Collection (FSA-OWI) at the
United States Library of Congress. We selected the col-
lection for three reasons. First, it is a part of one of the
most famous and researched photography archives from the
United States (Tagg, 2009). Second, the collection is held
by a library that is invested in open access and encourages
experimentation with their digital collections. Third, the
collection is indicative of many documentary photography
collections held in GLAM institutions. It is a large enough
collection that manual annotation of new features would be
overly time consuming and expensive. It has has some de-
scriptive metadata consisting of minimal captions, but these
are too short and vauge to easily facilitate semantic connec-
tions within and across collections.

The remainder of this article is structured as follows. Sec-
tion 2 gives a brief survey of several projects currently us-
ing computer vision and structured data to augment historic
image collections. Section 3 provides an overview of im-
age segmentation and the current approaches for the classi-
fication of stuff categories. Section 4 presents our specific
approach and schema for producing structured data from
images. In Section 5 we give an evaluation of our approach
applied to a collection of 1610 photographs from the 1930s
and 1940s. We conclude in Section 6 with a discussion of
future possibilities and challenges of applying image seg-
mentation to historic datasets.

2. Background

The task of enriching image datasets with automated de-
scriptions has been approached from several angles. Meth-
ods include object detection (2.1), automated captions (2.2)
and image embeddings (2.3). The objects of study in his-
toric datasets often do not align with the contemporary cat-

egories used to describe object detection algorithms, auto-
mated captions, and the types of relationships produced by
image embeddings. Working with historic data to produce
the kinds of automated extraction of structured data neces-
sary requires a different approach, which we outline in the
sections that follow.

2.1. Object Detection

The algorithmic identification of objects within an image is
one of the most prominent tasks in computer vision. Early
tasks focused on relatively simple objectives, such as the
classification of hand-written digits in the MNIST dataset,
which used small 28-by-28 grids of black and white pixels
(Platt, 1999). Modern training datasets feature thousands
of categories, ranging for very specific categories, such as
a specific species of dogs, to relatively abstract concepts
such as ‘grocery stores’ and ‘parties’. Using transfer learn-
ing, in which a model trained on one dataset is modified to
function on a new task, it is possible to produce algorithms
trained to detect virtually any object category by manually
tagging only a small set of training examples. The train-
ing of models for specific features has been employed in
the annotation of several historical image datasets, such as
the location of Dadaism art work (Thompson and Mimno,
2017) and detecting figures in digitized newspapers (Wev-
ers and Smits, 2019).

Current state-of-the-art models for detecting objects within
images are difficult to use as a general-purpose code system
for the analysis of visual culture. Available models fea-
ture categories that are too specific and only cover a very
small number of the object types that could be seen within
the frame of modern, western-centric film and photography.
When considering historical or more diverse datasets, the
coverage is even worse. For example, the popular ILSVRC
dataset contains 1000 categories, but only seven types of
fruits (fig, pineapple, banana, pomegranate, apple, straw-
berry, orange, and lemon), four vegetables (cucumber, ar-
tichoke, bell pepper, head cabbage), and eight other food
items (pretzel, bagel, pizza, hotdog, hamburger, guacamole,
burrito, and popsicle) (Russakovsky et al., 2015). There are
no generic catch-all food categories for other items falling
outside of these lists. While there are 120 subcategories
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Figure 3: Example of a trained stuff-segementation algorithm applied to one FSA-OWI photograph (Wu et al., 2019). The
algorithm detected five types of regions: sky, mountain, grass, things, and person.

for dog breeds, there is no category pertaining to horses or
cows. Applying these object detection models indiscrim-
inately to a large corpus without understanding its limita-
tions will result in biased results. They will find certain
kinds of food items, animals, and clothing, but will com-
pletely ignore examples outside of a narrowly curated list
of categories.

Object detection is a useful tool for annotating specific fea-
tures of interest within a collection. However, each feature
requires a manually trained model and may not generalize
well to a new collection. Using existing models with pre-
selected categories on historic images typically produces a
mix of correct and false annotations. Figure 1 shows the
results of a popular object detection algorithm to the FSA-
OWI collection (Wu et al., 2019). While some categories
produced reasonably accurate annotations, such as the de-
tection of horses and people, most categories detected more
false positives than successfully generated tags. Without a
good general-purpose collection of object detectors, a chal-
lenge discussed further in Section 6 , object detection re-
mains difficult to use as a means for producing structured
data for linking historic image collections.

2.2. Automated Captions

Because object detection on its own has major chal-
lenges, particularly when working with historic data, an-
other method has been to use automated captions. The au-
tomated generation of descriptive image captions is a more
ambitious task that has been a popular line of research at the
intersection of computational linguistics and computer vi-
sion. Captions generated through neural networks with the
help of linked textual data have shown to be fairly accurate,
offering a useful tool for automated description of images
in news articles and other media powerful (Hessel et al.,

2019) (Batra et al., 2018) (Hollink et al., 2016). As with
object detection, automatically generated captions within
well-defined domains, such as profile photos, has also been
fairly successful at generating accurate descriptions (Gatt
et al., 2018). On the more general task of generating free-
form image captions, current state-of-the-art methods also
produce impressive results when applied to modern datasets
(Nikolaus et al., 2019) (Jiang et al., 2019) (Wang et al.,
2018). On datasets that differ from the specific training
data, however, modern methods too-often produce nonsen-
sical results that make them difficult to deploy directly in an
archive. Figure 2 show the results of one popular caption al-
gorithm applied to photographs from the 1940s (Xu et al.,
2015). While two captions produce reasonable results, a
third incorrectly identifies the object held by the main sub-
ject and the fourth mistakenly believes the two men in the
frame are giraffes.

2.3. Image Embedding

Given the difficulty of automatically producing accurate
structure data from image collections, the use of image em-
bedding has become a popular approach for finding links
between and across collections of visual data. Similar
to the process of using word embeddings, image embed-
dings most frequently project a collection of images into the
penultimate layer of a neural network. Once represented as
a sequence of numbers in a high-dimensional space, images
within an across collections can be associated with their
closest neighbors (McAuley et al., 2015). Flattening image
embeddings into two or three dimensions produces useful
visualizations of large image collections. Tools in the dig-
ital humanities, such as Yale DH Lab’s PixPlot, make this
approach accessible to a large community of users and il-
lustrates the appeal of its method (Duhaime, 2019).
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Group Meta Categories Categories
indoor ceiling ceiling-tile
indoor floor floor-wood; floor-stone; floor-tile; floor-marble; carpet
indoor food fruit; vegetable; salad
indoor furniture cabinet; cupboard; counter; desk; door; light; mirror; shelf; stairs; table
indoor rawmaterial cardboard; metal; paper; plastic
indoor textile banner; blanket; curtain; cloth; clothes; napkin; mat; pillow; rug; towel
indoor wall wall-brick; wall-stone; wall-tile; wall-wood; wall-panel; wall-concrete
indoor window window-blind
outdoor building bridge; house; roof; skyscraper; tent
outdoor ground dirt; gravel; pavement; platform; playingfield; railroad; road; sand; snow; mud
outdoor plant flower; grass; tree; bush; leaves; branch; moss; straw
outdoor sky clouds
outdoor solid mountain; rock; hill; stone; wood
outdoor structural fence; net; railing; cage
outdoor water river; sea; waterdrops; fog

Table 1: Hierarchical description of 91 stuff categories (Caesar et al., 2018). Additionally, each metacategory other than
“rawmaterial” also contains an “other” label (not shown) for regions that do not fit into any specific category.

For finding similar images or detecting patterns and trends
within a collection, image embeddings are a useful tool and
generalize well to new and historic datasets. By forgoing
the explicit creation of structured data, they avoid many of
the pitfalls of the automated information extraction. How-
ever, the constructed data does not produce meaningful re-
lationships that can be easily distributed as structured data.
This makes it difficult to extend the recommendation sys-
tem to new collections and to find links across a web of
archives.

3. Image Segementation of Stuff
A recent development in computer vision has opened an
exciting new path for the automated description of images.
In 2018, a research team from University of Edinburgh
and Google AI released a new corpus of image training
data that contained 91 new categories (Caesar et al., 2018).
However, unlike previous image datasets, their categories
did not focus on the detection of specific objects. Rather,
the team built an ontology and large collection of training
data to detect the “amorphous background regions” within
an image. These regions do not correspond to objects,
but instead to un-enumerable collections such as the sky,
water, and ceilings. The team described these regions as
“stuff” categories and proposed a comprehensive ontology
of them. Their approach split all regions under two groups:
“indoor stuff” and “outdoor stuff”. These groups are fur-
ther divided into meta categories, which include “water”,
“ground”, “sky”, “furniture”, and “floor”. Finally, these are
split into 91 fine-grained categories such as “sea”, “mud”,
“clouds”, and “carpet”. A full description of the available
categories is given in Table 1. The joint task of identifying
these labels alongside object labels has been one of shared
tasks sponsored by the Common Objects in Context chal-
lenge from 2017 to 2019 (Kirillov et al., 2019). As a result,
there are now many accurate models for automatically la-
belling these regions. Figure 3 shows the detected regions
found within an image from the FSA-OWI archive.

While no classification scheme can be free of cultural as-

sumptions nor account for all possible scenarios, the stuff
categories are significantly more generic than the object
categories. This is particularly true of the high- and mid-
level categories. The higher-level categories avoid some
of the material-specific designations from the lowest-level
categories, such as wood flooring, that may not be appli-
cable with images that significantly depart from the avail-
able training data. By aggregating information about de-
tected stuff categories, we can make intelligent guesses
about whether an image was taken inside or outside, how
the people in the image are placed relative to the back-
ground, and the location and role of the horizon in framing
the image.

As always when working with automatically generated an-
notations, care should be taken to avoid misinterpreting the
results of stuff-segmentation algorithms. There are cate-
gories that have a degree pf ambiguity between them, such
as “dirt” and “sand” or “mat” and “rug”. Also, the stuff cat-
egories were designed pragmatically for the task of assign-
ing all the pixels in an image to a fixed set of classifications.
The distinction between stuff and objects is not a sharp
epistemological distinction. Several categories overlap be-
tween the two, such as “furniture” and “door”; the differ-
ence in labels is a result of the size of the images and their
resolution rather than a fundamental property of the objects
themselves. These ambiguities are essentially unavoidable
and should not deter the usage of the stuff categories. The
only caution is to avoid making claims that may come down
to relatively arbitrary distinctions between categories—for
example, claiming that Photographer A took more photos
with dirt backgrounds whereas Photographer B preferred
sand backgrounds—without carefully evaluation the appro-
priateness of the distinction and the accuracy of the auto-
matic identification in a particular application.

4. Annotations as Structured Data
Our proposed method for the automatic extraction of struc-
tured data from image data begins by applying the Detec-
tron2 implementation of image stuff segmentation (Wu et



6

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix pgram: <http://photogrammar.org#> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix oa: <http://www.w3.org/ns/oa#> .

<http://photogrammar.org/anno1> a oa:Annotation ;
dcterms:creator <http://photogrammar.org/tarnold2> ;
dcterms:created "2020-02-19T12:00:00Z" ;
oa:hasBody [

a pgram:ImageSegmentationRegion ;
pgram:regionName <http://example.org/stuff/things> ;
pgram:regionPercent 32 ;

] ;
oa:hasTarget <http://photogrammar.org/resource/1a35022v> ;
oa:motivatedBy oa:tagging .

<http://photogrammar.org/anno2> a oa:Annotation ;
dcterms:creator <http://photogrammar.org/tarnold2> ;
dcterms:created "2020-02-19T12:01:00Z" ;
oa:hasBody [

a pgram:ImageSegmentationRegion ;
pgram:regionName <http://example.org/stuff/people> ;
pgram:regionPercent 6 ;
pgram:regionCount 1 ;

] ;
oa:hasTarget <http://photogrammar.org/resource/1a35022v> ;
oa:motivatedBy oa:tagging .

Schema 1: Example of extracted structured data from the image in Figure 3 using the stuff-based image segmentation
technique.

al., 2019). The total proportion of the image allocated to
each stuff category is computed from the annotated image.
For any category that constitutes more than 5% of the to-
tal image, we store an annotation relating the category to
the image, along with the overall percentage score. Addi-
tionally, we tabulate the number of detected people in the
image. While the general purpose object detections are not
reliable on historic images, the detection of the people cat-
egory is reasonably accurate across different corpora and
the presence (or absence) of people within an image is an
important feature to distinguish different image subjects.

The utility of structured data rests on describing data us-
ing standard ontologies. It is important, when extracting
data for linkage and discovery, to carefully consider the
schema(s) to use in describing relationships. There cur-
rently exist several ontologies for describing image data.
Schema.org supplies generic schemas for photographs, im-
ages, paintings, and creative works (Guha et al., 2016).
Dublin core offers a well-established ontology for describ-
ing digital records specifically designed for libraries and
digital archives (Weibel, 1997). Both of these are useful
for describing the provenance of digital objects. Several
schema also exist for describing the content of image data,
often with a specific focus on describing time-coded mov-
ing images such as film and television. The Advene project
provides an ontology designed to integrate with their man-
ually annotation tool (Aubert and Prié, 2005). The Audio-
Visual Rhetorics of Affect group extended this vocabulary to
include more granular terms that capture formal elements
of affect and film studies (Agt-Rickauer et al., 2018).

The field-specific ontologies provided for digital images
provide useful methods for linking collections. Our digital
project based on the FSA-OWI collection uses the Dublin
Core Metadata Element Set to describe each record. In our
work here, however, we aim for simplicity by describing
our annotations using a class extension of the the Web An-
notation Data Model (Sanderson et al., 2017). Schema 1
shows any example of the extracted structured data from
regions detected in the image from Figure 3. Each de-
tected region type within an image is assigned a unique
identifier describing the region. This region is then asso-
ciated with the original image, the type of region and the
percentage of area taken up by the region. For the per-
son annotation, the number of individual objects (1) is also
recorded. Not shown in the example is a structured descrip-
tion of the region type codes that encode the hierarchical
relationships described in Table 1. The title of the image
is included to indicate where other image-level metadata
would be recorded—such as the photographer, date, and
rights information—in the full record.

5. Evaluation

The annotation method described in Section 4 was applied
to the entire corpus of 1610 color photographs from the
FSA-OWI collection (Trachtenberg, 1990). An example of
these are shown in Figure 4. For the purpose of comparison,
two additional annotations were also computed. Each pho-
tograph was tagged with detected objects and labelled with
any object that appeared with at least a probability of 85%
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Figure 4: Seven selected stuff types and the people category shown with the five images from the FSA-OWI color pho-
tographs that are most predicted to contain the given type. Uses the ResNet+FPN model provided by the Detectron2 model
zoo (Wu et al., 2019). The only labels that appears the be falsely detected are in the third and fifth bridge images, where
construction equipment is falsely believed to be a bridge.
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and for each photograph an automatically detected caption
was produced (Figures 1-2 show examples of these annota-
tions).1 The annotations for each photograph were coded
to indicate where the annotation was accurately applied.
A “stuff” region label was considered accurate if the re-
gion was visible within the image and an object label was
considered accurate if the object existed somewhere in the
image. A caption was considered accurate if it could be
considered true in a strictly literal sense. For example, a
caption saying that there are two people in an image that
contains three people was considered correct for our pur-
pose. Because not all images are guaranteed to include a
region that falls above our threshold for inclusion, we also
recorded the percentage of images that had at least one cor-
responding label (called recall in the results). The results
are given in Table 2.

Acc. Recall Unique Results
Stuff & People 97.5% 98.9% 1140
Objects 70.7% 37.3% 178
Captions 31.5% 100% 1040

Table 2: Results of manually validated labels produced on
the FSA-OWI color photographs.

Both the close-analysis of the annotations in Figure 4 il-
lustrate the efficacy of “stuff” region-based annotations for
adding structured data to historic image data. The object
annotations do offer many useful features, but have an error
rate around 30%, making them difficult to use without man-
ual validation. At the moment the captions are correct less
than a third of the time, and even the best captions fall far
short of human-produced records. The “stuff” regions have
an accuracy of 97.5%; while public display of estimated an-
notations should contain a note about their auto-generated
nature, it is possible to use these annotations without man-
ual validation. The high accuracy of the stuff-based anno-
tation method does not come at the cost of producing only
uninteresting or unexpressive relations. In fact, the number
of uniquely labelled images is slightly higher than even the
captions-based method, and labels were found for nearly
99% of all images. Looking manually at the results of the
most representative images, we see that the stuff-categories
capture key features of most of the image backgrounds and
many of their foregrounds.

6. Conclusions and Future Directions
We have presented a method for the automated production
of structured data describing the content of photographic-
corpora. The robustness and efficacy of our method was
shown through a case-study using 1610 documentary pho-
tographs from the 1930s and 1940s. While other methods,
such as object-detection and automated caption generation,
have the potential to provide additional structured data, the
generalizability of our approach offers a strategy for algo-
rithmically enriching large corpora of photographic mate-

1Full replication code, data, and results are available
at: https://github.com/statsmaths/fsa_color_
analysis.

rials through structured data in order to facilitate access,
discovery, and exploration within and across collections.

The approach presented here offers several avenues for fur-
ther extensions to supply additional structured information
to historic image corpora. First, there are a number of
ways that we could further encode information about the
detected regions. For example, recording the dominant col-
ors of each region type or indicating what part of an im-
age a region is located. Secondly, it is possible to develop
a structured language for creating image captions from the
structured data. In connection with the first item, this would
lead to captions such as a “Photograph of two people, with
a green mountain and blue sky in the background”. This
could produce image captions that, while more predictable
than techniques allowing for free-form language, are also
significantly more accurate. Finally, and most ambitiously,
would be to construct a generic, hierarchical version of a
tagged object detection algorithm that simulates the stuff-
based regions. This would allow for a similar usage of
object-detection algorithms for the automated extraction of
objects in the foreground of an image without being con-
strained to narrowly defined categories selected by current
datasets.
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