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Abstract

We propose PeTra, a memory-augmented neu-
ral network designed to track entities in its
memory slots. PeTra is trained using sparse
annotation from the GAP pronoun resolution
dataset and outperforms a prior memory model
on the task while using a simpler architec-
ture. We empirically compare key modeling
choices, finding that we can simplify several
aspects of the design of the memory module
while retaining strong performance. To mea-
sure the people tracking capability of memory
models, we (a) propose a new diagnostic evalu-
ation based on counting the number of unique
entities in text, and (b) conduct a small scale
human evaluation to compare evidence of peo-
ple tracking in the memory logs of PeTra rela-
tive to a previous approach. PeTra is highly ef-
fective in both evaluations, demonstrating its
ability to track people in its memory despite
being trained with limited annotation.

1 Introduction

Understanding text narratives requires maintaining
and resolving entity references over arbitrary-length
spans. Current approaches for coreference resolu-
tion (Clark and Manning, 2016b; Lee et al., 2017,
2018; Wu et al., 2019) scale quadratically (without
heuristics) with length of text, and hence are im-
practical for long narratives. These models are also
cognitively implausible, lacking the incrementality
of human language processing (Tanenhaus et al.,
1995; Keller, 2010). Memory models with finite
memory and online/quasi-online entity resolution
have linear runtime complexity, offering more scal-
ability, cognitive plausibility, and interpretability.

Memory models can be viewed as general prob-
lem solvers with external memory mimicking a
Turing tape (Graves et al., 2014, 2016). Some
of the earliest applications of memory networks

in language understanding were for question an-
swering, where the external memory simply stored
all of the word/sentence embeddings for a docu-
ment (Sukhbaatar et al., 2015; Kumar et al., 2016).
To endow more structure and interpretability to
memory, key-value memory networks were intro-
duced by Miller et al. (2016). The key-value archi-
tecture has since been used for narrative understand-
ing and other tasks where the memory is intended
to learn to track entities while being guided by vary-
ing degrees of supervision (Henaff et al., 2017; Liu
et al., 2018a,b, 2019a).

We propose a new memory model, PeTra, for
entity tracking and coreference resolution, inspired
by the recent Referential Reader model (Liu et al.,
2019a) but substantially simpler. Experiments on
the GAP (Webster et al., 2018) pronoun resolu-
tion task show that PeTra outperforms the Refer-
ential Reader with fewer parameters and simpler
architecture. Importantly, while Referential Reader
performance degrades with larger memory, PeTra
improves with increase in memory capacity (before
saturation), which should enable tracking of a larger
number of entities. We conduct experiments to as-
sess various memory architecture decisions, such
as learning of memory initialization and separation
of memory slots into key/value pairs.

To test interpretability of memory models’ entity
tracking, we propose a new diagnostic evaluation
based on entity counting—a task that the models
are not explicitly trained for—using a small amount
of annotated data. Additionally, we conduct a small
scale human evaluation to assess quality of people
tracking based on model memory logs. PeTra sub-
stantially outperforms Referential Reader on both
measures, indicating better and more interpretable
tracking of people.1

1Code available at https://github.com/
shtoshni92/petra

https://github.com/shtoshni92/petra
https://github.com/shtoshni92/petra
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Figure 1: Illustration of memory cell updates in an example sentence where IG = ignore, OW = overwrite, CR =
coref. Different patterns indicate the different entities, and an empty pattern indicates that the cell has not been
used. The updated memory cells at each time step are highlighted.

2 Model

Figure 2 depicts PeTra, which consists of three
components: an input encoder that given the tokens
generates the token embeddings, a memory module
that tracks information about the entities present
in the text, and a controller network that acts as an
interface between the encoder and the memory.
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Figure 2: Proposed model.

2.1 Input Encoder
Given a document consisting of a sequence of to-
kens {w1, · · · , wT }, we first pass the document
through a fixed pretrained BERT model (Devlin
et al., 2019) to extract contextual token embed-
dings. Next, the BERT-based token embeddings
are fed into a single-layer unidirectional Gated Re-
current Unit (GRU) (Cho et al., 2014) running
left-to-right to get task-specific token embeddings
{h1, · · · ,hT }.

2.2 Memory
The memoryMt consists of N memory cells. The
ith memory cell state at time step t consists of a
tuple (mi

t, u
i
t) where the vector mi

t represents the
content of the memory cell, and the scalar uit ∈

[0, 1] represents its recency of usage. A high value
of uit is intended to mean that the cell is tracking an
entity that has been recently mentioned.

Initialization Memory cells are initialized to the
null tuple, i.e. (0, 0); thus, our memory is parameter-
free. This is in contrast with previous entity tracking
models such as EntNet (Henaff et al., 2017) and
the Referential Reader (Liu et al., 2019a) where
memory initialization is learned and the cells are
represented with separate key and value vectors. We
will later discuss variants of our memory with some
of these changes.

2.3 Controller
At each time step t the controller network deter-
mines whether token t is part of an entity span and,
if so, whether the token is coreferent with any of
the entities already being tracked by the memory.
Depending on these two variables, there are three
possible actions:

(i) IGNORE: The token is not part of any entity
span, in which case we simply ignore it.

(ii) OVERWRITE: The token is part of an entity
span but is not already being tracked in the
memory.

(iii) COREF: The token is part of an entity span
and the entity is being tracked in the memory.

Therefore, the two ways of updating the memory are
OVERWRITE and COREF. There is a strict ordering
constraint to the two operations: OVERWRITE pre-
cedes COREF, because it is not possible to corefer
with a memory cell that is not yet tracking anything.
That is, the COREF operation cannot be applied to
a previously unwritten memory cell, i.e. one with
uit = 0. Figure 1 illustrates an idealized version of
this process.

Next we describe in detail the computation of the
probabilities of the two operations for each memory
cell at each time step t.
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First, the entity mention probability et, which
reflects the probability that the current token wt is
part of an entity mention, is computed by:

et = σ(MLP1(ht)) (1)

where MLP1 is a multi-layer perceptron and σ is
the logistic function.

Overwrite and Coref If the current token wt is
part of an entity mention, we need to determine
whether it corresponds to an entity being currently
tracked by the memory or not. For this we compute
the similarity between the token embedding ht and
the contents of the memory cells currently tracking
entities. For the ith memory cell with memory
vector mi

t−1 the similarity with ht is given by:

simi
t = MLP2([ht;m

i
t−1;ht �mi

t−1;u
i
t−1])

(2)
where MLP2 is a second MLP and � is the
Hadamard (elementwise) product. The usage scalar
uit−1 in the above expression provides a notion of
distance between the last mention of the entity in
cell i and the potential current mention. The higher
the value of uit−1, the more likely there was a recent
mention of the entity being tracked by the cell. Thus
uit−1 provides an alternative to distance-based fea-
tures commonly used in pairwise scores for spans
(Lee et al., 2017).

Given the entity mention probability et and simi-
larity score simi

t, we define the coref score cs it as:

cs it = simi
t −∞ · 1[uit−1 = 0] (3)

where the second term ensures that the model does
not predict coreference with a memory cell that has
not been previously used, something not enforced
by Liu et al. (2019a).2 Assuming the coref score
for a new entity to be 0,3 we compute the coref
probability cit and new entity probability nt as
follows: 

c1t
...
cNt
nt

 = et · softmax


cs1t

...
csNt
0

 (4)

Based on the memory usage scalars uit and the new
entity probability nt, the overwrite probability for

2A threshold higher than 0 can also be used to limit coref-
erence to only more recent mentions.

3The new entity coref score is a free variable that can be
assigned any value, since only the relative value matters.

each memory cell is determined as follows:

oit = nt · 1i=argminj u
j
t−1

(5)

Thus we pick the cell with the lowest usage scalar
ujt−1 to OVERWRITE. In case of a tie, a cell is picked
randomly among the ones with the lowest usage
scalar. The above operation is non-differentiable,
so during training we instead use

oit = nt · GS
(
1− uit−1

τ

)
i

(6)

where GS(.) refers to Gumbel-Softmax (Jang et al.,
2017), which makes overwrites differentiable.

For each memory cell, the memory vector is
updated based on the three possibilities of ignoring
the current token, being coreferent with the token,
or considering the token to represent a new entity
(causing an overwrite):

mi
t =

IGNORE︷ ︸︸ ︷
(1− (oit + cit))m

i
t−1 +

OVERWRITE︷ ︸︸ ︷
oit · ht

+ cit ·MLP3([ht;m
i
t−1])︸ ︷︷ ︸

COREF

(7)

In this expression, the coreference term takes into
account both the previous cell vector mi

t−1 and the
current token representation ht, while the overwrite
term is based only on ht. In contrast to a similar
memory update equation in the Referential Reader
which employs a pair of GRUs and MLPs for each
memory cell, our update parameter uses just MLP3

which is memory cell-agnostic.
Finally, the memory usage scalar is updated as

uit = min(1, oit + cit + γ · uit−1) (8)

where γ ∈ (0, 1) is the decay rate for the usage
scalar. Thus the usage scalar uit keeps decaying with
time unless the memory is updated via OVERWRITE

or COREF in which case the value is increased to
reflect the memory cell’s recent use.

Memory Variants In vanilla PeTra, each mem-
ory cell is represented as a single vector and the
memory is parameter-free, so the total number of
model parameters is independent of memory size.
This is a property that is shared with, for exam-
ple, differentiable neural computers (Graves et al.,
2016). On the other hand, recent models for entity
tracking, such as the EntNet (Henaff et al., 2017)
and the Referential Reader (Liu et al., 2019a), learn
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memory initialization parameters and separate the
memory cell into key-value pairs. To compare
these memory cell architectures, we investigate the
following two variants of PeTra:

1. PeTra + Learned Initialization: memory cells
are initialized at t = 0 to learned parameter
vectors.

2. PeTra + Fixed Key: a fixed dimensions of each
memory cell are initialized with learned param-
eters and kept fixed throughout the document
read, as in EntNet (Henaff et al., 2017).

Apart from initialization, the initial cell vectors are
also used to break ties for overwrites in Eqs. (5)
and (6) when deciding among unused cells (with
uit = 0). The criterion for breaking the tie is the
similarity score computed using Eq. (2).

2.4 Coreference Link Probability

The probability that the tokens wt1 and wt2 are
coreferential according to, say, cell i of the memory
depends on three things: (a) wt1 is identified as part
of an entity mention and is either overwritten to cell
i or is part of an earlier coreference chain for an
entity tracked by cell i, (b) Cell i is not overwritten
by any other entity mention from t = t1 + 1 to
t = t2, and (c) wt2 is also predicted to be part of
an entity mention and is coreferential with cell i.
Combining these factors and marginalizing over
the cell index results in the following expression
for the coreference link probability:

PCL(wt1 , wt2)

=

N∑
i=1

(oit1 + cit1) ·
t2∏

j=t1+1

(1− oij) · cit2 (9)

2.5 Losses

The GAP (Webster et al., 2018) training dataset is
small and provides sparse supervision with labels
for only two coreference links per instance. In order
to compensate for this lack of supervision, we use a
heuristic loss Lent over entity mention probabilities
in combination with the end task loss Lcoref for
coreference. The two losses are combined with a
tunable hyperparameter λ resulting in the following
total loss: L = Lcoref + λLent .

2.5.1 Coreference Loss
The coreference loss is the binary cross entropy
between the ground truth labels for mention pairs

and the coreference link probability PCL in Eq. (9).
Eq. (9) expects a pair of tokens while the annota-
tions are on pairs of spans, so we compute the loss
for all ground truth token pairs: Lcoref =

∑
(sa,sb,yab)∈G

( ∑
wa∈sa

∑
wb∈sb

H(yab, PCL(wa, wb))

)

where G is the set of annotated span pairs and
H(p, q) represents the cross entropy of the distribu-
tion q relative to distribution p.

Apart from the ground truth labels, we use “im-
plied labels” in the coreference loss calculation.
For handling multi-token spans, we assume that all
tokens following the head token are coreferential
with the head token (self-links). We infer more
supervision based on knowledge of the setup of the
GAP task. Each GAP instance has two candidate
names and a pronoun mention with supervision
provided for the {name, pronoun} pairs. By design
the two names are different, and therefore we use
them as a negative coreference pair.

Even after the addition of this implied supervi-
sion, our coreference loss calculation is restricted
to the three mention spans in each training instance;
therefore, the running time is O(T ) for finite-sized
mention spans. In contrast, Liu et al. (2019a) com-
pute the above coreference loss for all token pairs
(assuming a negative label for all pairs outside of
the mentions), which results in a runtime of O(T 3)
due to the O(T 2) pairs and O(T ) computation per
pair, and thus will scale poorly to long documents.

2.5.2 Entity Mention Loss
We use the inductive bias that most tokens do not
correspond to entities by imposing a loss on the
average of the entity mention probabilities predicted
across time steps, after masking out the labeled
entity spans. For a training instance where spans
sA and sB correspond to the person mentions and
span sP is a pronoun, the entity mention loss is

Lent =
∑T

t=1 et ·mt∑T
t=1mt

where mt = 0 if wt ∈ sA ∪ sB ∪ sP and mt = 1
otherwise.

Each GAP instance has only 3 labeled entity
mention spans, but the text typically has other en-
tity mentions that are not labeled. Unlabeled entity
mentions will be inhibited by this loss. However,
on average there are far more tokens outside entity
spans than inside the spans. In experiments without
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this loss, we observed that the model is suscepti-
ble to predicting a high entity probability for all
tokens while still performing well on the end task
of pronoun resolution. We are interested in tracking
people beyond just the entities that are labeled in
the GAP task, for which this loss is very helpful.

3 Experimental Setup

3.1 Data

GAP is a gender-balanced pronoun resolution
dataset introduced by Webster et al. (2018). Each
instance consists of a small snippet of text from
Wikipedia, two spans corresponding to candidate
names along with a pronoun span, and two binary la-
bels indicating the coreference relationship between
the pronoun and the two candidate names. Relative
to other popular coreference datasets (Pradhan et al.,
2012; Chen et al., 2018), GAP is comparatively
small and sparsely annotated. We choose GAP
because its small size allows us to do extensive
experiments.

3.2 Model Details

For the input BERT embeddings, we concatenate
either the last four layers of BERTBASE, or layers
19–22 of BERTLARGE since those layers have been
found to carry the most information related to coref-
erence (Liu et al., 2019b). The BERT embeddings
are fed to a 300-dimensional GRU model, which
matches the dimensionality of the memory vectors.

We vary the number of memory cells N from
2 to 20. The decay rate for the memory usage
scalar γ is 0.98. The MLPs used for predicting the
entity probability and similarity score consist of
two 300-dimensional ReLU hidden layers. For the
Fixed Key variant of PeTra we use 20 dimensions
for the learned key vector and the remaining 280
dimensions as the value vector.

3.3 Training

All models are trained for a maximum of 100 epochs
with the Adam optimizer (Kingma and Ba, 2015).
The learning rate is initialized to 10−3 and is re-
duced by half, until a minimum of 10−4, when-
ever there is no improvement on the validation
performance for the last 5 epochs. Training stops
when there is no improvement in validation per-
formance for the last 15 epochs. The temperature
τ of the Gumbel-Softmax distribution used in the
OVERWRITE operation is initialized to 1 and halved
every 10 epochs. The coreference loss terms in

Section 2.5.1 are weighted differently for different
coreference links: (a) self-link losses for multi-to-
ken spans are given a weight of 1, (b) positive coref-
erence link losses are weighted by 5, and (c) nega-
tive coreference link losses are multiplied by 50. To
prevent overfitting: (a) we use early stopping based
on validation performance, and (b) apply dropout
at a rate of 0.5 on the output of the GRU model.
Finally, we choose λ = 0.1 to weight the entity
prediction loss described in Section 2.5.2.

3.4 People Tracking Evaluation

One of the goals of this work is to develop memory
models that not only do well on the coreference
resolution task, but also are interpretable in the
sense that the memory cells actually track entities.
Hence in addition to reporting the standard metrics
on GAP, we consider two other ways to evaluate
memory models.

As our first task, we propose an auxiliary entity-
counting task. We take 100 examples from the
GAP validation set and annotate them with the
number of unique people mentioned in them.4 We
test the models by predicting the number of people
from their memory logs as explained in Section 3.5.
The motivation behind this exercise is that if a
memory model is truly tracking entities, then its
memory usage logs should allow us to recover this
information.

To assess the people tracking performance more
holistically, we conduct a human evaluation in
which we ask annotators to assess the memory mod-
els on people tracking performance, defined as:(a)
detecting references to people including pronouns,
and (b) maintaining a 1-to-1 correspondence be-
tween people and memory cells. For this study, we
pick the best run (among 5 runs) of PeTra and the
Referential Reader for the 8-cell configuration us-
ing BERTBASE (PeTra: 81 F1; Referential Reader:
79 F1). Next we randomly pick 50 documents
(without replacement) from the GAP dev set and
split those into groups of 10 to get 5 evaluation sets.
We shuffle the original 50 documents and follow
the same steps to get another 5 evaluation sets. In
the end, we have a total of 10 evaluation sets with
10 documents each, where each unique document
belongs to exactly 2 evaluation sets.

We recruit 10 annotators for the 10 evaluation
sets. The annotators are shown memory log visual-
izations as in Figure 5, and instructed to compare

4In the GAP dataset, the only relevant entities are people.
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(a) BERTBASE (b) BERTLARGE

Figure 3: Mean F1 score on the GAP validation set as a function of the number of memory cells.

the models on their people tracking performance
(detailed instructions in Appendix A.3). For each
document the annotators are presented memory
logs of the two models (ordered randomly) and
asked whether they prefer the first model, prefer the
second model, or have no preference (neutral).

3.5 Inference
GAP Given a pronoun span sP and two candidate
name spans sA & sB , we have to predict binary
labels for potential coreference links between (sA,
sP ) and (sB , sP ). Thus, for a pair of entity spans,
say sA and sP , we predict the coreference link
probability as:

PCL(sA, sP ) = max
wA∈sA,wP∈sP

PCL(wA, wP )

where PCL(wA, wP ) is calculated using the proce-
dure described in Section 2.45. The final binary
prediction is made by comparing the probability
against a threshold.

Counting unique people For the test of unique
people counting, we discretize the overwrite opera-
tion, which corresponds to new entities, against a
threshold α and sum over all tokens and all memory
cells to predict the count as follows:

# unique people =

T∑
t=1

N∑
i=1

1[oit ≥ α]

3.6 Evaluation Metrics
For GAP we evaluate models using F-score.6 First,
we pick a threshold from the set {0.01, 0.02, · · · ,

5The computation of this probability includes the mention
detection steps required byWebster et al. (2018).

6GAP also includes evaluation related to gender bias, but
this is not a focus of this paper so we do not report it.

1.00} which maximizes the validation F-score. This
threshold is then used to evaluate performance on
the GAP test set.

For the interpretability task of counting unique
people, we choose a threshold that minimizes the
absolute difference between ground truth count and
predicted count summed over the 100 annotated
examples. We select the best threshold from the set
{0.01, 0.02, · · · , 1.00}. The metric is then the num-
ber of errors corresponding to the best threshold.7

3.7 Baselines

The Referential Reader (Liu et al., 2019a) is the
most relevant baseline in the literature, and the most
similar to PeTra. The numbers reported by Liu et al.
(2019a) are obtained by a version of the model
using BERTBASE, with only two memory cells. To
compare against PeTra for other configurations, we
retrain the Referential Reader using the code made
available by the authors.8

We also report the results of Joshi et al. (2019)
and Wu et al. (2019), although these numbers are
not comparable since both of them train on the much
larger OntoNotes corpus and just test on GAP.

4 Results

4.1 GAP results

We train all the memory models, including the Ref-
erential Reader, with memory size varying from {2,
4, · · · , 20} memory cells for both BERTBASE and
BERTLARGE, with each configuration being trained
5 times. Figure 3 shows the performance of the

7Note that the error we report is therefore a best-case result.
We are not proposing a way of counting unique people in new
test data, but rather using this task for analysis.

8https://github.com/liufly/refreader

https://github.com/liufly/refreader
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(a) BERTBASE (b) BERTLARGE

Figure 4: Error in counting unique people as a function of number of memory cells; lower is better.

BERTBASE BERTLARGE

PeTra 81.5 ± 0.6 85.3 ± 0.6
+ Learned Init. 80.9 ± 0.7 84.4 ± 1.2
+ Fixed Key 81.1 ± 0.7 85.1 ± 0.8

Ref. Reader 78.9 ± 1.3 83.7 ± 0.8
Ref. Reader (2019a) 78.8 -

Joshi et al. (2019) 82.8 85.0
Wu et al. (2019) - 87.5 (SpanBERT)

Table 1: Results (%F1) on the GAP test set.

models on the GAP validation set as a function
of memory size. The Referential Reader outper-
forms PeTra (and its memory variants) when using
a small number of memory cells, but its perfor-
mance starts degrading after 4 and 6 memory cells
for BERTBASE and BERTLARGE respectively. PeTra
and its memory variants, in contrast, keep improv-
ing with increased memory size (before saturation
at a higher number of cells) and outperform the best
Referential Reader performance for all memory
sizes ≥ 6 cells. With larger numbers of memory
cells, we see a higher variance, but the curves for
PeTra and its memory variants are still consistently
higher than those of the Referential Reader.

Among different memory variants of PeTra,
when using BERTBASE the performances are com-
parable with no clear advantage for any particular
choice. For BERTLARGE, however, vanilla PeTra
has a clear edge for almost all memory sizes, sug-
gesting the limited utility of initialization. The
results show that PeTra works well without learn-
ing vectors for initializing the key or memory cell
contents. Rather, we can remove the key/value
distinction and simply initialize all memory cells
with the zero vector.

To evaluate on the GAP test set, we pick the
memory size corresponding to the best validation

performance for all memory models. Table 1 shows
that the trends from validation hold true for test
as well, with PeTra outperforming the Referential
Reader and the other memory variants of PeTra.

4.2 Counting unique people
Figure 4 shows the results for the proposed inter-
pretability task of counting unique people. For both
BERTBASE and BERTLARGE, PeTra achieves the
lowest error count. Interestingly, from Figure 4b
we can see that for ≥ 14 memory cells, the other
memory variants of PeTra perform worse than the
Referential Reader while being better at the GAP
validation task (see Figure 3b). This shows that a
better performing model is not necessarily better at
tracking people.

BERTBASE BERTLARGE

PeTra 0.76 0.69
+ Learned Init 0.72 0.60
+ Fixed Key 0.72 0.65

Ref. Reader 0.49 0.54

Table 2: Spearman’s correlation between GAP valida-
tion F1 and negative error count for unique people.

To test the relationship between the GAP task
and the proposed interpretability task, we compute
the correlation between the GAP F-score and the
negative count of unique people for each model sep-
arately.9 Table 2 shows the Spearman’s correlation
between these measures. For all models we see a
positive correlation, indicating that a dip in coref-
erence performance corresponds to an increase in
error on counting unique people. The correlations
for PeTra are especially high, again suggesting it’s
greater interpretability.

9Each correlation is computed over 50 runs (5 runs each
for 10 memory sizes).
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Amelia Shepherd1 , M.D. is a fictional character on the ABC American television medical drama Private Practice, and the

spinoff series’ progenitor show, Grey’s Anatomy, portrayed by Caterina Scorsone2 . In her1 debut appearance in season

three, Amelia1 visited her former sister-in-law, Addison Montgomery3 , and became a partner at the Oceanside Wellness
Group.
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(a) A successful run of PeTra with 4 memory cells. The model accurately links all the mentions of “Amelia” to the same memory
cell while also detecting other people in the discourse.

Bethenny1 calls a meeting to get everyone on the same page, but Jason2 is hostile with the group, making things worse

and forcing Bethenny1 to play referee. Emotions are running high with Bethenny1 ’s assistant, Julie3 , who breaks

down at a lunch meeting when asked if she3 is committed to the company for the long haul.
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(b) Memory log of PeTra with 8 memory cells. The model correctly links “she” and “Julie” but fails at linking the three “Bethenny”
mentions, and also fails at detecting “Jason”.

Figure 5: Visualization of memory logs for different configurations of PeTra. The documents have their GAP
annotations highlighted in red (italics) and blue (bold), with blue (bold) corresponding to the right answer. For
illustration purposes only, we highlight all the spans corresponding to mentions of people and mark cluster indices
as subscript. In the plot, X-axis corresponds to document tokens, and Y-axis corresponds to memory cells. Each
memory cell has the OW=OVERWRITE and CR=COREF labels. Darker color implies higher value. We skip text,
indicated via ellipsis, when the model doesn’t detect people for extended lengths of text.

4.3 Human Evaluation for People Tracking

Model Preference (in %)

PeTra 74
Ref. Reader 08
Neutral 18

Table 3: Human Evaluation results for people tracking.

Table 3 summarizes the results of the human
evaluation for people tracking. The annotators

prefer PeTra in 74% cases while the Referential
Reader for only 8% instances (see Appendix A.4
for visualizations comparing the two). Thus, PeTra
easily outperforms the Referential Reader on this
task even though they are quite close on the GAP
evaluation. The annotators agree on 68% of the
documents, disagree between PeTra and Neutral for
24% of the documents, and disagree between PeTra
and the Referential Reader for the remaining 8%
documents. For more details, see Appendix A.2.
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4.4 Model Runs

We visualize two runs of PeTra with different con-
figurations in Figure 5. For both instances the model
gets the right pronoun resolution, but clearly in Fig-
ure 5b the model fails at correctly tracking repeated
mentions of “Bethenny”. We believe these errors
happen because (a) GAP supervision is limited to
pronoun-proper name pairs, so the model is never
explicitly supervised to link proper names, and (b)
there is a lack of span-level features, which hurts
the model when a name is split across multiple
tokens.

5 Related Work

There are several strands of related work, includ-
ing prior work in developing neural models with
external memory as well as variants that focus on
modeling entities and entity relations, and neural
models for coreference resolution.

Memory-augmented models. Neural network
architectures with external memory include mem-
ory networks (Weston et al., 2015; Sukhbaatar et al.,
2015), neural Turing machines (Graves et al., 2014),
and differentiable neural computers (Graves et al.,
2016). This paper focuses on models with induc-
tive biases that produce particular structures in the
memory, specifically those related to entities.

Models for tracking and relating entities. A
number of existing models have targeted entity
tracking and coreference links for a variety of tasks.
EntNet (Henaff et al., 2017) aims to track enti-
ties via a memory model. EntityNLM (Ji et al.,
2017) represents entities dynamically within a neu-
ral language model. Hoang et al. (2018) augment
a reading comprehension model to track entities,
incorporating a set of auxiliary losses to encourage
capturing of reference relations in the text. Dhingra
et al. (2018) introduce a modified GRU layer de-
signed to aggregate information across coreferent
mentions.

Memory models for NLP tasks. Memory mod-
els have been applied to several other NLP tasks
in addition to coreference resolution, including tar-
geted aspect-based sentiment analysis (Liu et al.,
2018b), machine translation (Maruf and Haffari,
2018), narrative modeling (Liu et al., 2018a), and
dialog state tracking (Perez and Liu, 2017). Our
study of architectural choices for memory may also
be relevant to models for these tasks.

Neural models for coreference resolution. Sev-
eral neural models have been developed for corefer-
ence resolution, most of them focused on modeling
pairwise interactions among mentions or spans in a
document (Wiseman et al., 2015; Clark and Man-
ning, 2016a; Lee et al., 2017, 2018). These models
use heuristics to avoid computing scores for all
possible span pairs in a document, an operation
which is quadratic in the document length T assum-
ing a maximum span length. Memory models for
coreference resolution, including our model, differ
by seeking to store information about entities in
memory cells and then modeling the relationship
between a token and a memory cell. This reduces
computation from O(T 2) to O(TN), where N is
the number of memory cells, allowing memory
models to be applied to longer texts by using the
global entity information. Past work (Wiseman
et al., 2016) have used global features, but in con-
junction with other features to score span pairs.

Referential Reader. Most closely related to the
present work is the Referential Reader (Liu et al.,
2019a), which uses a memory model to perform
coreference resolution incrementally. We signifi-
cantly simplify this model to accomplish the same
goal with far fewer parameters.

6 Conclusion and Future Work

We propose a new memory model for entity track-
ing, which is trained using sparse coreference res-
olution supervision. The proposed model outper-
forms a previous approach with far fewer parame-
ters and a simpler architecture. We propose a new
diagnostic evaluation and conduct a human evalu-
ation to test the interpretability of the model, and
find that our model again does better on this evalua-
tion. In future work, we plan to extend this work
to longer documents such as the recently released
dataset of Bamman et al. (2019).
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A Appendix

A.1 Best Runs vs. Worst Runs

As Table 1 shows, there is significant variance in the
performance of these memory models. To analyze
how the best runs diverge from the worst runs, we
analyze how the controller network is using the
different memory cells in terms of overwrites. For
this analysis, we choose the best and worst among
the 5 runs for each configuration, as determined
by GAP validation performance. For the selected
runs, we calculate the KL-divergence of the average
overwrite probability distribution from the uniform
distribution and average it for each model type.
Table 4 shows that for the memory variants Learned
Init and Fixed Key, the worst runs overwrite more to
some memory cells than others (high average KL-
divergence). Note that both PeTra and Referential
Reader are by design intended to have no preference
for any particular memory cell (which the numbers
support), hence the low KL-divergence.

Avg KL-div
Best run Worst run

PeTra 0.00 0.01
+ Learned Init. 0.3 0.83
+ Fixed Key 0.2 0.8

Ref. Reader 0.05 0.04

Table 4: A comparison of best runs vs. worst runs.

A.2 Human Evaluation Results
The agreement matrix for the human evaluation
study described in Section 4.3 is shown in Figure 6.
This agreement matrix is a result of the two anno-
tations per document that we get as per the setup
described in Section 3.4. Note that the annotations
are coming from two sets of annotators rather than
two individual annotators. This is also the rea-
son why we don’t report standard inter-annotator
agreement coefficients.

PeTra Ref Reader Neutral

Annotation 2

PeTra

Ref Reader

Neutral
A

nn
ot

at
io

n
1

29

4 2

12 0 3

Figure 6: Agreement matrix for human evaluation
study.

A.3 Instructions for Human Evaluation
The detailed instructions for the human evaluation
study described in Section 4.3 are shown in Figure 7.
We simplified certain memory model specific terms
such as “overwrite” to “new person” since the study
was really about people tracking.

A.4 Comparative visualization of memory
logs of PeTra and the Referential Reader

Figure 8 and 9 compare the memory logs of PeTra
and the Referential Reader.
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• In this user study we will be comparing memory models at tracking people.

• What are memory models? Memory models are neural networks coupled with an external
memory which can be used for reading/writing.

• (IMPORTANT) What does it mean to track people for memory models?

– Detect all references to people which includes pronouns.
– A 1-to-1 correspondence between people and memory cells i.e. all references corresponding

to a person should be associated with the same memory cell AND each memory cell should
be associated with at most 1 person.

• The memory models use the following scores (which are visualized) to indicate the tracking
decisions:

– New Person Probability (Cell i): Probability that the token refers to a new person (not
introduced in the text till now) and we start tracking it in cell i.

– Coreference Probability (Cell i): Probability that the token refers to a person already being
tracked in cell i.

• The objective of this study is to compare the models on the interpretability of their memory logs
i.e. are the models actually tracking entities or not. You can choose how you weigh the different
requirements for tracking people (from 3).

• For this study, you will compare two memory models with 8 memory cells (represented via 8
rows). The models are ordered randomly for each instance.

• For each document, you can choose model A or model B, or stay neutral in case both the models
perform similarly.

Figure 7: Instructions for the human evaluation study.
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Neef1 took an individual silver medal at the 1994 European Cup behind Russia’s
Svetlana Goncharenko2 and returned the following year to win gold. She1 was a finalist individu-

ally at the 1994 European Championships and came sixth for Scotland at the 1994 Commonwealth
Games.

(a) GAP validation instance 293. The ground truth GAP annotation is indicated via colors.
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(b) Memory log of PeTra with 8 memory cells. PeTra uses only 2 memory cells for the 2 unique people, namely Neef and
Svetlana Goncharenko, and correctly resolves the pronoun.
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(c) Memory log of the Referential Reader with 8-memory cells. The Referential Reader does successfully resolve the pronoun in
the topmost memory cell but it ends up tracking Neef in as many as 4 memory cells.

Figure 8: Both the models only weakly detect “Svetlana Goncharenko” which could be due to lack of span model-
ing.
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Fripp1 has performed Soundscapes in several situations: * Fripp1 has featured Soundscapes on

various King Crimson albums. He1 has also released pure Soundscape recordings as well: * On May
4, 2006, Steve Ball2 invited Robert Fripp1 back to the Microsoft campus for a second full day of

work on Windows Vista following up on his1 first visit in the Fall of 2005.

(a) GAP validation instance 17. The ground truth GAP annotation is indicated via colors.
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(b) Memory log of PeTra with 8-memory cells. PeTra is pretty accurate at tracking Robert Fripp but it misses out on connecting
“Fripp” from the earlier part of the document to “Robert Fripp”.
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(c) Memory log of the Referential Reader with 8-memory cells. The Referential Reader completely misses out on all the mentions
in the first half of the document (which is not penalized in GAP evaluations where the relevant annotations are typically towards
the end of the document). Apart from this, the model ends up tracking Robert Fripp in as many as 6 memory cells, and Steve Ball
in 3 memory cells.

Figure 9: PeTra clearly performs better than the Referential Reader at people tracking for this instance. PeTra’s
output is more sparse, detects more relevant mentions, and is better at maintaining a 1-to-1 correspondence between
memory cells and people.


