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Abstract

One of the most crucial challenges in question
answering (QA) is the scarcity of labeled data,
since it is costly to obtain question-answer
(QA) pairs for a target text domain with hu-
man annotation. An alternative approach to
tackle the problem is to use automatically gen-
erated QA pairs from either the problem con-
text or from large amount of unstructured texts
(e.g. Wikipedia). In this work, we propose a hi-
erarchical conditional variational autoencoder
(HCVAE) for generating QA pairs given un-
structured texts as contexts, while maximizing
the mutual information between generated QA
pairs to ensure their consistency. We validate
our Information Maximizing Hierarchical
Conditional Variational AutoEncoder (Info-
HCVAE) on several benchmark datasets by
evaluating the performance of the QA model
(BERT-base) using only the generated QA
pairs (QA-based evaluation) or by using both
the generated and human-labeled pairs (semi-
supervised learning) for training, against state-
of-the-art baseline models. The results show
that our model obtains impressive perfor-
mance gains over all baselines on both tasks,
using only a fraction of data for training. 1

1 Introduction

Extractive Question Answering (QA) is one of the
most fundamental and important tasks for natural
language understanding. Thanks to the increased
complexity of deep neural networks and use of
knowledge transfer from the language models pre-
trained on large-scale corpora (Peters et al., 2018;
Devlin et al., 2019; Dong et al., 2019), the state-
of-the-art QA models have achieved human-level
performance on several benchmark datasets (Ra-
jpurkar et al., 2016, 2018). However, what is also

* Equal contribution
1The generated QA pairs and the code can be found at

https://github.com/seanie12/Info-HCVAE

Paragraph (Input) Philadelphia has more murals than
any other u.s. city, thanks in part to the 1984 creation
of the department of recreation’s mural arts program,
. . . The program has funded more than 2,800 murals

Q1 which city has more murals than any other city?
A1 philadelphia

Q2 why philadelphia has more murals?
A2 the 1984 creation of the department of recreation’s

mural arts program

Q3 when did the department of recreation’ s mural
arts program start ?

A3 1984

Q4 how many murals funded the graffiti arts program
by the department of recreation?

A4 more than 2,800

Table 1: An example of QA pairs generated with our frame-
work. The paragraph is an extract from Wikipedia provided
by Du and Cardie (2018). For more examples, please see
Appendix D.

crucial to the success of the recent data-driven mod-
els, is the availability of large-scale QA datasets. To
deploy the state-of-the-art QA models to real-world
applications, we need to construct high-quality
datasets with large volumes of QA pairs to train
them; however, this will be costly, requiring a mas-
sive amount of human efforts and time.

Question generation (QG), or Question-Answer
pair generation (QAG), is a popular approach to
overcome this data scarcity challenge. Some of
the recent works resort to semi-supervised learning,
by leveraging large amount of unlabeled text (e.g.
Wikipedia) to generate synthetic QA pairs with
the help of QG systems (Tang et al., 2017; Yang
et al., 2017; Tang et al., 2018; Sachan and Xing,
2018). However, existing QG systems have over-
looked an important point that generating QA pairs
from a context consisting of unstructured texts, is
essentially a one-to-many problem. Sequence-to-
sequence models are known to generate generic
sequences (Zhao et al., 2017a) without much vari-
ety, as they are trained with maximum likelihood
estimation. This is highly suboptimal for QAG

https://github.com/seanie12/Info-HCVAE
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since the contexts given to the model often con-
tain richer information that could be exploited to
generate multiple QA pairs.

To tackle the above issue, we propose a novel
probabilistic deep generative model for QA pair
generation. Specifically, our model is a hierarchical
conditional variational autoencoder (HCVAE) with
two separate latent spaces for question and answer
conditioned on the context, where the answer latent
space is additionally conditioned on the question
latent space. During generation, this hierarchical
conditional VAE first generates an answer given a
context, and then generates a question given both
the answer and the context, by sampling from both
latent spaces. This probabilistic approach allows
the model to generate diverse QA pairs focusing
on different parts of a context at each time.

Another crucial challenge of the QG task is to
ensure the consistency between a question and its
corresponding answer, since they should be seman-
tically dependent on each other such that the ques-
tion is answerable from the given answer and the
context. In this paper, we tackle this consistency
issue by maximizing the mutual information (Bel-
ghazi et al., 2018; Hjelm et al., 2019; Yeh and
Chen, 2019) between the generated QA pairs. We
empirically validate that the proposed mutual in-
formation maximization significantly improves the
QA-pair consistency. Combining both the hier-
archical CVAE and the InfoMax regularizer to-
gether, we propose a novel probabilistic genera-
tive QAG model which we refer to as Information
Maximizing Hierarchical Conditional Variational
AutoEncoder (Info-HCVAE). Our Info-HCVAE
generates diverse and consistent QA pairs even
from a very short context (see Table 1).

But how should we quantitatively measure the
quality of the generated QA pairs? Popular evalu-
ation metrics (e.g. BLEU (Papineni et al., 2002),
ROUGE (Lin and Hovy, 2002), METEOR (Baner-
jee and Lavie, 2005)) for text generation only tell
how similar the generated QA pairs are to Ground-
Truth (GT) QA pairs, and are not directly corre-
lated with their actual quality (Nema and Khapra,
2018; Zhang and Bansal, 2019). Therefore, we use
the QA-based Evaluation (QAE) metric proposed
by Zhang and Bansal (2019), which measures how
well the generated QA pairs match the distribution
of GT QA pairs. Yet, in a semi-supervised learning
setting where we already have GT labels, we need
novel QA pairs that are different from GT QA pairs

for the additional QA pairs to be truly effective.
Thus, we propose a novel metric, Reverse QAE
(R-QAE), which is low if the generated QA pairs
are novel and diverse.

We experimentally validate our QAG model
on SQuAD v1.1 (Rajpurkar et al., 2016), Natural
Questions (Kwiatkowski et al., 2019), and Trivi-
aQA (Joshi et al., 2017) datasets, with both QAE
and R-QAE using BERT-base (Devlin et al., 2019)
as the QA model. Our QAG model obtains high
QAE and low R-QAE, largely outperforming state-
of-the-art baselines using a significantly smaller
number of contexts. Further experimental results
for semi-supervised QA on the three datasets using
the SQuAD as the labeled dataset show that our
model achieves significant improvements over the
state-of-the-art baseline (+2.12 on SQuAD, +5.67
on NQ, and +1.18 on Trivia QA in EM).

Our contribution is threefold:

• We propose a novel hierarchical variational
framework for generating diverse QA pairs from
a single context, which is, to our knowledge, the
first probabilistic generative model for question-
answer pair generation (QAG).
• We propose an InfoMax regularizer which ef-

fectively enforces the consistency between the
generated QA pairs, by maximizing their mutual
information. This is a novel approach in resolv-
ing consistency between QA pairs for QAG.
• We evaluate our framework on several bench-

mark datasets by either training a new model
entirely using generated QA pairs (QA-based
evaluation), or use both ground-truth and gener-
ated QA pairs (semi-supervised QA). Our model
achieves impressive performances on both tasks,
largely outperforming existing QAG baselines.

2 Related Work

Question and Question-Answer Pair Genera-
tion Early works on Question Generation (QG)
mostly resort to rule-based approaches (Heilman
and Smith, 2010; Lindberg et al., 2013; Labutov
et al., 2015). However, recently, encoder-decoder
based neural architectures (Du et al., 2017; Zhou
et al., 2017) have gained popularity as they out-
perform rule-based methods. Some of them use
paragraph-level information (Du and Cardie, 2018;
Song et al., 2018; Liu et al., 2019; Zhao et al., 2018;
Kim et al., 2019; Sun et al., 2018) as additional in-
formation. Reinforcement learning is a popular
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approach to train the neural QG models, where the
reward is defined as the evaluation metrics (Song
et al., 2017; Kumar et al., 2018), or the QA ac-
curacy/likelihood (Yuan et al., 2017; Hosking and
Riedel, 2019; Zhang and Bansal, 2019). State-of-
the-art QG models (Alberti et al., 2019; Dong et al.,
2019; Chan and Fan, 2019) use pre-trained lan-
guage models. Question-Answer Pair Generation
(QAG) from contexts, which is our main target, is
a relatively less explored topic tackled by only a
few recent works (Du and Cardie, 2018; Alberti
et al., 2019; Dong et al., 2019). To the best of our
knowledge, we are the first to propose a probabilis-
tic generative model for end-to-end QAG; Yao et al.
(2018) use VAE for QG, but they do not tackle
QAG. Moreover, we effectively resolve the QA-
pair consistency issue by maximizing their mutual
information with an InfoMax regularizer (Belghazi
et al., 2018; Hjelm et al., 2019; Yeh and Chen,
2019), which is another contribution of our work.

Semi-supervised QA with QG With the help of
QG models, it is possible to train the QA models
in a semi-supervised learning manner to obtain im-
proved performance. Tang et al. (2017) apply dual
learning to jointly train QA and QG on unlabeled
dataset. Yang et al. (2017) and Tang et al. (2018)
train QG and QA in a GAN framework (Goodfel-
low et al., 2014). Sachan and Xing (2018) propose
a curriculum learning to supervise the QG model
to gradually generate difficult questions for the QA
model. Dhingra et al. (2018) introduce a cloze-style
QAG method to pretrain a QA model. Zhang and
Bansal (2019) propose to filter out low-quality syn-
thetic questions by the answer likelihood. While
we focus on the answerable setting in this paper,
few recent works tackle the unanswerable settings.
Zhu et al. (2019) use neural networks to edit an-
swerable questions into unanswerable ones, and
perform semi-supervised QA. Alberti et al. (2019)
and Dong et al. (2019) convert generated questions
into unanswerable ones using heuristics, and filter
or replace corresponding answers based on EM or
F1.

Variational Autoencoders Variational autoen-
coders (VAEs) (Kingma and Welling, 2014) are
probabilistic generative models used in a variety
of natural language understanding tasks, including
language modeling (Bowman et al., 2016), dia-
logue generation (Serban et al., 2017; Zhao et al.,
2017b; Park et al., 2018; Du et al., 2018; Qiu et al.,
2019), and machine translation (Zhang et al., 2016;

Su et al., 2018; Deng et al., 2018). In this work,
we propose a novel hierarchical conditional VAE
framework with an InfoMax regularization for gen-
erating a pair of samples with high consistency.

3 Method

Our goal is to generate diverse and consistent QA
pairs to tackle the data scarcity challenge in the ex-
tractive QA task. Formally, given a context c which
contains M tokens, c = (c1, . . . , cM ), we want to
generate QA pairs (x,y) where x = (x1, . . . , xN )
is the question containing N tokens and y =
(y1, . . . , yL) is its corresponding answer contain-
ing L tokens. We aim to tackle the QAG task by
learning the conditional joint distribution of the
question and answer given the context, p(x,y|c),
from which we can sample the QA pairs:

(x,y) ∼ p(x,y|c)

We estimate p(x,y|c) with a probabilistic deep
generative model, which we describe next.

3.1 Hierarchical Conditional VAE
We propose to approximate the unknown condi-
tional joint distribution p(x,y|c), with a varia-
tional autoencoder (VAE) framework (Kingma and
Welling, 2014). However, instead of directly learn-
ing a common latent space for both question and
answer, we model p(x,y|c) in a hierarchical condi-
tional VAE framework with a separate latent space
for question and answer as follows:

pθ(x,y|c)

=

∫
zx

∑
zy

pθ(x|zx,y, c)pθ(y| zx, zy, c)·

pψ(zy|zx, c)pψ(zx|c)dzx

where zx and zy are latent variables for question
and answer respectively, and the pψ(zx|c) and
pψ(zy|zx, c) are their conditional priors following
an isotropic Gaussian distribution and a categorical
distribution (Figure 1-(a)). We decompose the la-
tent space of question and answer, since the answer
is always a finite span of context c, which can be
modeled well by a categorical distribution, while
a continuous latent space is a more appropriate
choice for question since there could be unlimited
valid questions from a single context. Moreover,
we design the bi-directional dependency flow of
joint distribution for QA. By leveraging hierarchi-
cal structure, we enforce the answer latent variables
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Figure 1: The conceptual illustration of the proposed HCVAE model encoding and decoding question and its corresponding
answer jointly. The dashed line refers to the generative process of HCVAE.

Figure 2: The directed graphical model for HCVAE. The
gray and white nodes denote observed and latent variables.

to be dependent on the question latent variables in
pψ(zy|zx, c) and achieve the reverse dependency
by sampling question x ∼ pθ(x|zx,y, c). We then
use a variational posterior qφ(·) to maximize the
Evidence Lower Bound (ELBO) as follows (The
complete derivation is provided in Appendix A):

log pθ(x,y|c) ≥ Ezx∼qφ(zx|x,c)[log pθ(x|zx,y, c)]

+ Ezy∼qφ(zy|zx,y,c)[log pθ(y|zy, c)]

− DKL[qφ(zy|zx,y, c)||pψ(zy|zx, c)]

− DKL[qφ(zx|x, c)||pψ(zx|c)]

=: LHCVAE

where θ, φ, and ψ are the parameters of the genera-
tion, posterior, and prior network, respectively. We
refer to this model as a Hierarchical Conditional
Variational Autoencoder (HCVAE) framework.

Figure 2 shows the directed graphical model of
our HCVAE. The generative process is as follows:

1. Sample question L.V.: zx ∼ pψ(zx | c)

2. Sample answer L.V.: zy ∼ pψ(zy | zx, c)

3. Generate an answer: y ∼ pθ(y | zy, c)

4. Generate a question: x ∼ pθ(x | zx,y, c)

Embedding We use the pre-trained word embed-
ding network from BERT (Devlin et al., 2019) for
posterior and prior networks, whereas the whole
BERT is used as a contextualized word embedding
model for the generative networks. For the answer

encoding, we use a binary token type id of BERT.
Specifically, we encode all context tokens as 0s,
except for the tokens which are part of answer span
(highlighted words of context in Figure 1-(a) or
-(c)), which we encode as 1s. We then feed the
sequence of the word token ids, token type ids, and
position ids into the embedding layer to encode the
answer-aware context. We fix all the embedding
layers in HCVAE during training.

Prior Networks We use two different conditional
prior networks pψ(zx|c), pψ(zy|zx, c) to model
context-dependent priors (the dashed lines in Fig-
ure 1-(a)). To obtain the parameters of isotropic
Gaussian N (µ,σ2I) for pψ(zx|c), we use a bi-
directional LSTM (Bi-LSTM) to encode the word
embeddings of the context into the hidden repre-
sentations, and then feed them into a Multi-Layer
Perceptron (MLP). We model pψ(zy|zx, c) follow-
ing a categorical distribution Cat(π), by computing
the parameter π from zx and the hidden represen-
tation of the context using another MLP.

Posterior Networks We use two conditional pos-
terior networks qφ(zx|x, c), qφ(zy|zx,y, c) to ap-
proximate true posterior distributions of latent vari-
ables for both question x and answer y. We use
two Bi-LSTM encoders to output the hidden rep-
resentations of question and context given their
word embeddings. Then, we feed the two hidden
representations into MLP to obtain the parameters
of Gaussian distribution, µ′ and σ′ (upper right
corner in Figure 1-(a)). We use the reparameteriza-
tion trick (Kingma and Welling, 2014) to train the
model with backpropagation since the stochastic
sampling process zx ∼ qφ(zx|x, c) is nondiffer-
entiable. We use another Bi-LSTM to encode the
word embedding of answer-aware context into the
hidden representation. Then, we feed the hidden
representation and zx into MLP to compute the
parameters π′ of categorical distribution (lower
right corner in Figure 1-(a)). We use the categori-
cal reparameterization trick with gumbel-softmax
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(Maddison et al., 2017; Jang et al., 2017) to enable
backpropagation through sampled discrete latent
variables.
Answer Generation Networks Since we consider
extractive QA, we can factorize pθ(y|zy, c) into
pθ(ys|zy, c) and pθ(ye|zy, c), where ys and ye are
the start and the end position of an answer span
(highlighted words in Figure 1-(b)), respectively.
To obtain MLE estimators for both, we first encode
the context c into the contextualized word embed-
ding of Ec = {ec1, . . . , ecM} with the pre-trained
BERT. We compute the final hidden representation
of context and the latent variable zy with a heuristic
matching layer (Mou et al., 2016) and a Bi-LSTM:

fi = [eci ; zy; |eci − zy |; eci � zy]
−→
h i =

−−−−→
LSTM([fi,

−→
h i−1])

←−
h i =

←−−−−
LSTM([fi,

←−
h i+1])

H = [
−→
h i;
←−
h i ]Mi=1

where zy is linearly transformed, and H ∈ Rdy×M
is the final hidden representation. Then, we feed H
into two separate linear layers to predict ys and ye.
Question Generation Networks We design the
encoder-decoder architecture for our QG network
by mainly adopting from our baselines (Zhao et al.,
2018; Zhang and Bansal, 2019). For encoding, we
use pre-trained BERT to encode the answer-specific
context into the contextualized word embedding,
and then use a two-layer Bi-LSTM to encode it into
the hidden representation (in Figure 1-(c)). We ap-
ply a gated self-attention mechanism (Wang et al.,
2017) to the hidden representation to better cap-
ture long-term dependencies within the context, to
obtain a new hidden representation Ĥ ∈ Rdx×M .

The decoder is a two-layered LSTM which re-
ceives the latent variable zx as an initial state. It
uses an attention mechanism (Luong et al., 2015)
to dynamically aggregate Ĥ at each decoding step
into a context vector of sj , using the j-th decoder
hidden representation dj ∈ Rdx (in Figure 1-(c)).
Then, we feed dj and sj into MLP with maxout
activation (Goodfellow et al., 2013) to compute the
final hidden representation d̂j as follows:

d0 = zx, dj = LSTM([exj−1,dj−1])

rj = ĤTWadj , aj = softmax(rj), sj = Ĥaj

d̂j = MLP([ dj ; sj ])

where zx is linearly transformed, and exj is the
j-th question word embedding. The probabil-
ity vector over the vocabulary is computed as

p(xj |x<j , zx,y, c) = softmax(Wed̂j). We ini-
tialize the weight matrix We as the pretrained
word embedding matrix and fix it during training.
Further, we use the copy mechanism (Zhao et al.,
2018), so that the model can directly copy tokens
from the context. We also greedily decode ques-
tions to ensure that all stochasticity comes from the
sampling of the latent variables.

3.2 Consistent QA Pair Generation with
Mutual Information Maximization

One of the most important challenges of the QAG
task is enforcing consistency between the gener-
ated question and its corresponding answer. They
should be semantically consistent, such that it is
possible to predict the answer given the question
and the context. However, neural QG or QAG
models often generate questions irrelevant to the
context and the answer (Zhang and Bansal, 2019)
due to the lack of the mechanism enforcing this
consistency. We tackle this issue by maximizing
the mutual information (MI) of a generated QA
pair, assuming that an answerable QA pair will
have high MI. Since an exact computation of MI is
intractable, we use a neural approximation. While
there exist many different approximations (Belg-
hazi et al., 2018; Hjelm et al., 2019), we use the
estimation proposed by Yeh and Chen (2019) based
on Jensen-Shannon Divergence:

MI(X;Y ) ≥ Ex,y∼P[log g(x,y)]

+
1

2
Ex̃,y∼N[log(1− g(x̃,y))]

+
1

2
Ex,ỹ∼N[log(1− g(x, ỹ))]

=: LInfo

where EP and EN denote expectation over positive
and negative examples. We generate negative ex-
amples by shuffling the QA pairs in the minibatch,
such that a question is randomly associated with
an answer. Intuitively, the function g(·) acts like a
binary classifier that discriminates whether QA pair
is from joint distribution or not. We empirically
find that the following g(·) effectively achieves our
goal of consistent QAG:

g(x,y) = sigmoid(xTWy)

where x = 1
N

∑
i d̂i and y = 1

L

∑
j ĥj are sum-

marized representations of question and answer,
respectively. Combined with the ELBO, the final
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objective of our Info-HCVAE is as follows:

max
Θ
LHCVAE + λLInfo

where Θ includes all the parameters of φ, ψ, θ and
W, and λ controls the effect of MI maximization.
In all experiments, we always set the λ as 1.

4 Experiment

4.1 Dataset
Stanford Question Answering Dataset v1.1
(SQuAD) (Rajpurkar et al., 2016). This is a read-
ing comprehension dataset consisting of questions
obtained from crowdsourcing on a set of Wikipedia
articles, where the answer to every question is a seg-
ment of text or a span from the corresponding read-
ing passage. We use the same split used in Zhang
and Bansal (2019) for the fair comparison.
Natural Questions (NQ) (Kwiatkowski et al.,
2019). This dataset contains realistic questions
from actual user queries to a search engine, using
Wikipedia articles as context. We adapt the dataset
provided from MRQA shared task (Fisch et al.,
2019) and convert it into the extractive QA format.
We split the original validation set in half, to use as
validation and test for our experiments.
TriviaQA (Joshi et al., 2017). This is a reading
comprehension dataset containing question-answer-
evidence triples. The QA pairs and the evidence
(contexts) documents are authored and uploaded
by Trivia enthusiasts. Again, we only choose QA
pairs of which answers are span of contexts.
HarvestingQA 2 This dataset contains top-ranking
10K Wikipedia articles and 1M synthetic QA pairs
generated from them, by the answer span extraction
and QG system proposed in (Du and Cardie, 2018).
We use this dataset for semi-supervised learning.

4.2 Experimental Setups
Implementation Details In all experiments, we
use BERT-base (d = 768) (Devlin et al., 2019) as
the QA model, setting most of the hyperparameters
as described in the original paper. For both HCVAE
and Info-HCVAE, we set the hidden dimensionality
of the Bi-LSTM to 300 for posterior, prior, and an-
swer generation networks, and use the dimensional-
ity of 450 and 900 for the encoder and the decoder
of the question generation network. We set the di-
mensionality of zx as 50, and define zy to be set of

2https://github.com/xinyadu/
harvestingQA

10-way categorical variables zy = {z1, . . . , z20}.
For training the QA model, we fine-tune the model
for 2 epochs. We train both the QA model and
Info-HCVAE with Adam optimizer (Kingma and
Ba, 2015) with the batch size of 32 and the initial
learning rate of 5 · 10−5 and 10−3 respectively. For
semi-supervised learning, we first pre-train BERT
on the synthetic data for 2 epochs and fine-tune it
on the GT dataset for 2 epochs. To prevent poste-
rior collapse, we multiply 0.1 to the KL divergence
terms of question and answer (Higgins et al., 2017).
For more details of the datasets and experimental
setup, please see Appendix C.
Baselines We experiment two variants of our
model against several baselines:

1. Harvest-QG: An attention-based neural QG
model with a neural answer extraction system
(Du and Cardie, 2018).

2. Maxout-QG: A neural QG model based on
maxout copy mechanism with a gated self-
attetion (Zhao et al., 2018), which uses BERT
as the word embedding as suggested by Zhang
and Bansal (2019).

3. Semantic-QG: A neural QG model based on
Maxout-QG with semantic-enhanced reinforce-
ment learning (Zhang and Bansal, 2019).

4. HCVAE: Our HCVAE model without the Info-
Max regularizer.

5. Info-HCVAE: Our full model with the InfoMax
regularizer.

For the baselines, we use the same answer spans
extracted by the answer extraction system (Du and
Cardie, 2018).

4.3 Quantitative Analysis

QAE and R-QAE One of crucial challenges with
generative models is a lack of a good quantitative
evaluation metric. We adopt QA-based Evaluation
(QAE) metric proposed by Zhang and Bansal
(2019) to measure the quality of QA pair. QAE is
obtained by first training the QA model on the syn-
thetic data, and then evaluating the QA model with
human annotated test data. However, QAE only
measures how well the distribution of synthetic
QA pairs matches the distribution of GT QA pairs,
and does not consider the diversity of QA pairs.
Thus, we propose Reverse QA-based Evaluation
(R-QAE), which is the accuracy of the QA model
trained on the human-annotated QA pairs, evalu-
ated on the generated QA pairs. If the synthetic

https://github.com/xinyadu/harvestingQA
https://github.com/xinyadu/harvestingQA
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Method QAE (↑) R-QAE (↓)

SQuAD (EM/F1)

Harvesting-QG 55.11/66.40 64.77/78.85
Maxout-QG 56.08/67.50 62.49/78.24
Semantic-QG 60.49/71.81 74.23/88.54

HCVAE 69.46/80.79 37.57/61.24
Info-HCVAE 71.18/81.51 38.80/60.73

Natural Questions (EM/F1)

Harvesting-QG 27.91/41.23 49.89/70.01
Maxout-QG 30.98/44.96 49.96/70.03
Semantic-QG 30.59/45.29 58.42/79.23

HCVAE 31.45/46.77 32.78/55.12
Info-HCVAE 37.18/51.46 29.39/53.04

TriviaQA (EM/F1)

Harvesting-QG 21.32/30.21 29.75/47.73
Maxout-QG 24.58/34.32 31.56/49.92
Semantic-QG 27.54/38.25 37.45/58.15

HCVAE 30.20/40.88 34.41/48.16
Info-HCVAE 35.45/44.11 21.65/37.65

Table 2: QAE and R-QAE results on three datasets. All
results are the performances on our test set.

Harvest Maxout Semantic HCVAE Info-
-QG -QG -QG HCVAE

111.74 114.58 112.94 113.89 117.41

Table 3: The results of mutual information estimation. The
results are based on QA pairs generated from H×10%.

data covers larger distribution than the human anno-
tated training data, R-QAE will be lower. However,
note that having a low R-QAE is only meaningful
when the QAE is high enough since trivially invalid
questions may also yield low R-QAE.
Results We compare HCVAE and Info-HCVAE
with the baseline models on SQuAD, NQ, and Triv-
iaQA. We use 10% of Wikipedia paragraphs from
HarvestingQA (Du and Cardie, 2018) for evalua-
tion. Table 2 shows that both HCVAE and Info-
HCVAE significantly outperforms all baselines by
large margin in QAE on all three datasets, while
obtaining significantly lower R-QAE, which shows
that our model generated both high-quality and di-
verse QA pairs from the given context. Moreover,
Info-HCVAE largely outperforms HCVAE, which
demonstrates the effectiveness of our InfoMax reg-
ularizer for enforcing QA-pair consistency.

Figure 3 shows the accuracy as a function of
number of QA pairs. Our Info-HCVAE outper-
form all baselines by large margins using orders of
magnitude smaller number of QA pairs. For exam-
ple, Info-HCVAE achieves 61.38 points using 12K
QA pairs, outperforming Semantic-QG that use 10
times larger number of QA pairs. We also report
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Figure 3: QAE vs. # of QA pairs (log-scaled) on SQuAD.

Method QAE (↑) R-QAE (↓)

Baseline 56.08/67.50 62.49/78.24
+Q-latent 58.66/70.54 40.00/62.02
+A-latent 69.46/80.79 37.57/61.24
+InfoMax 71.18/81.51 38.80/60.73

Table 4: QAE and R-QAE results of the ablation study on
SQuAD dataset. All the results are the performances on our
test set.

the score of xTWy as an approximate estimation
of mutual information (MI) between QA pairs gen-
erated by each method in Table 3; our Info-HCVAE
yields the largest value of MI estimation.
Ablation Study We further perform an ablation
study to see the effect of each model component.
We start with the model without any latent vari-
ables, which is essentially a deterministic Seq2Seq
model (denoted as Baseline in Table 4). Then, we
add in the question latent variable (+Q-latent) and
then the answer latent variable (+A-latent), to see
the effect of probabilistic latent variable modeling
and hierarchical modeling respectively. The results
in Table 4 shows that both are essential for improv-
ing both the quality (QAE) and diversity (R-QAE)
of the generated QA pairs. Finally, adding in the In-
foMax regularization (+InfoMax) further improves
the performance by enhancing the consistency of
the generated QA pairs.

4.4 Qualitative Analysis

Human Evaluation As a qualitative analysis, we
first conduct a pairwise human evaluation of the QA
pairs generated by our Info-HCVAE and Maxout-
QG on 100 randomly selected paragraphs. Specif-
ically, 20 human judges performed blind quality
assessment of two sets of QA pairs that are pre-
sented in a random order, each of which contained
two to five QA pairs. Each set of QA pairs is evalu-



215

Method Diversity Consistency Overall

Baseline 26% 34% 30%
Ours 47% 50% 52%
Tie 27% 16% 18%

Table 5: The results of human judgement in terms of diversity,
consistency, and overall quality on the generated QA pairs.

Paragraph The scotland act 1998 which was passed by
and given royal assent by queen Elizabeth ii on 19
november 1998, governs functions and role of the scottish
parliament and delimits its legislative competence . . .

GT what act sets forth the functions of the scottish
parliament?

O-1 which act was passed in 1998?
O-2 which act governs role of the scottish parliament?
O-3 which act was passed by queen Elizabeth ii?
O-4 which act gave the scottish parliament the

responsibility to determine its legislative policy?

Table 6: Examples of one-to-many mapping of our Info-
HCVAE. The answer is highlighted by pink. GT denotes the
ground-truth question. O- denotes questions generated by
Info-HCVAE.

ated in terms of the overall quality, diversity, and
consistency between the generated QA pairs and
the context. The results in Table 5 show that the
QA pairs generated by our Info-HCVAE is evalu-
ated to be more diverse and consistent, compared
to ones generated by the baseline models.
One-to-Many QG To show that our Info-HCVAE
can effectively tackle one-to-many mapping prob-
lem for question generation, we qualitatively ana-
lyze the generated questions for given a context
and an answer from the SQuAD validation set.
Specifically, we sample the question latent vari-
ables multiple times using the question prior net-
work pψ(zx | c), and then feed them to question
generation networks pθ(x | zx,y, c) with the an-
swer. The example in Table 6 shows that our Info-
HCVAE generates diverse and semantically consis-
tent questions given an answer. We provide more
qualitative examples in Appendix D.
Latent Space Interpolation To examine if Info-
HCVAE learns meaningful latent space of QA pairs,
we qualitatively analyze the QA pairs generated
by interpolating between two latent codes of it on
SQuAD training set. We first encode zx from two
QA pairs using posterior networks of qφ(zx|x, c),
and then sample zy from interpolated values of
zx using prior networks pψ(zy|zx, c) to generate
corresponding QA pairs. Table 7 shows that the se-
mantic of the QA pairs generated smoothly transit
from one latent to another with high diversity and
consistency. We provide more qualitative examples

Paragraph ... Atop the main building’ s gold dome is
a golden statue of the virgin mary. ... Next to the main
building is the basilica of the sacred heart. Immediately
behind the basilica is the grotto, ... a marian place of
prayer and reflection. ... At the end of the main drive ...,
is a simple, modern stone statue of mary.

Ori1 Q what is the grotto at notre dame?
A a marian place of prayer and reflection

Gen

Q where is the grotto at?
A a marian place of prayer and reflection

Q what place is behind the basilica of prayer?
A grotto

Q what is next to the main building at
notre dame?

A the basilica of the sacred heart

Q what is at the end of the main drive?
A stone statue of mary

Ori2
Q what sits on top of the main building at

notre dame?
A a golden statue of the virgin mary

Table 7: QA pairs generated by interpolating between two
latent codes encoded by our posterior networks. Ori1 and
Ori2 are from training set of SQuAD.

in Appendix D.

4.5 Semi-supervised QA

We now validate our model in a semi-supervised
setting, where the model uses both the ground truth
labels and the generated labels to solve the QA task,
to see whether the generated QA pairs help improve
the performance of a QA model in a conventional
setting. Since such synthetic datasets consisting of
generated QA pairs may inevitably contain some
noise (Zhang and Bansal, 2019; Dong et al., 2019;
Alberti et al., 2019), we further refine the QA pairs
by using the heuristic suggested by Dong et al.
(2019), to replace the generated answers whose F1
score to the prediction of the QA model trained
on the human annotated data is lower than a set
threshold. We select the threshold of 40.0 for the
QA pair refinement model via cross-validation on
the SQuAD dataset, and used it for the experiments.
Please see Appendix C for more details.
SQuAD We first perform semi-supervised QA ex-
periments on SQuAD using the synthetic QA pairs
generated by our model. For the contexts, we use
both the paragraphs in the original SQuAD (S)
dataset, and the new paragraphs in the Harvest-
ingQA dataset (H). Using Info-HCVAE, we gener-
ate 10 different QA pairs by sampling from the la-
tent spaces (denoted as S×10). For the baseline, we
use Semantic-QG (Zhang and Bansal, 2019) with
the beam search size of 10 to obtain the same num-
ber of QA pairs. We also generate new QA pairs
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Data EM F1

SQuAD 80.25 88.23

Semantic-QG (baseline)

+S×10 81.20 (+0.95) 88.36 (+0.13)
+H×100% 81.03 (+0.78) 88.79 (+0.56)
+S×10 + H×100% 81.44 (+1.19) 88.72 (+0.49)

Info-HCVAE (ours)

+S×10 82.09 (+1.84) 89.11 (+0.88)
+H×10% 81.37 (+1.12) 88.85 (+0.62)
+H×20% 81.68 (+1.43) 89.06 (+0.93)
+H×30% 81.76 (+1.51) 89.12 (+0.89)
+H×50% 82.17 (+1.92) 89.38 (+1.15)
+H×100% 82.37 (+2.12) 89.63 (+1.40)
+S×10 + H×100% 82.19 (+1.94) 89.84 (+1.59)

Table 8: The results of semi-supervised QA experiments on
SQuAD. All the results are the performances on our test set.

using different portions of paragraphs provided in
HarvestingQA (denoted as H×10%-H×100%), by
sampling one latent variable per context. Table 8
shows that our framework improves the accuracy of
the BERT-base model by 2.12 (EM) and 1.59 (F1)
points, significantly outperforming Semantic-QG.
NQ and TriviaQA Our model is most useful when
we do not have any labeled data for a target dataset.
To show how well our QAG model performs in
such a setting, we train the QA model using only
the QA pairs generated by our model trained on
SQuAD and test it on the target datasets (NQ and
TriviaQA). We generate multiple QA pairs from
each context of the target dataset, sampling from
the latent space one to ten times (denoted by N×1-
10 or T×1-10 in Table 9). Then, we fine-tune the
QA model pretrained on the SQuAD dataset with
the generated QA pairs from the two datasets. Ta-
ble 9 shows that as we augment training data with
larger number of synthetic QA pairs, the perfor-
mance of the QA model significantly increases,
significantly outperforming the QA model trained
on SQuAD only. Yet, models trained with our QAG
still largely underperform models trained with hu-
man labels, due to the distributional discrepancy
between the source and the target dataset.

5 Conclusion

We proposed a novel probabilistic generative frame-
work for generating diverse and consistent question-
answer (QA) pairs from given texts. Specifically,
our model learns the joint distribution of question
and answer given context with a hierarchically con-
ditional variational autoencoder, while enforcing
consistency between generated QA pairs by max-
imizing their mutual information with a novel In-

Data EM F1

Natural Questions

SQuAD 42.77 57.29

+N×1 46.70 (+3.94) 61.08 (+3.79)
+N×2 46.95 (+4.19) 61.34 (+4.05)
+N×3 47.73 (+4.96) 61.98 (+4.69)
+N×5 48.19 (+5.42) 62.21 (+4.92)
+N×10 48.44 (+5.67) 62.69 (+5.40)

NQ 61.65 73.91

TriviaQA

SQuAD 48.96 57.98

+T×1 49.65 (+0.69) 59.13 (+1.21)
+T×2 50.01 (+1.05) 59.08 (+1.10)
+T×3 49.71 (+0.75) 59.49 (+1.51)
+T×5 50.14 (+1.18) 59.21 (+1.23)
+T×10 49.65 (+0.69) 59.20 (+1.22)

Trivia 64.55 70.42

Table 9: The result of semi-supervised QA experiments on
Natural Questions and TriviaQA dataset. All results are the
performance on our test set.

foMax regularizer. To our knowledge, ours is the
first successful probabilistic QAG model. We eval-
uated the QAG performance of our model by the
accuracy of the BERT-base QA model trained us-
ing the generated questions on multiple datasets,
on which it largely outperformed the state-of-the-
art QAG baseline (+6.59-10.69 in EM), even with
a smaller number of QA pairs. We further vali-
dated our model for semi-supervised QA, where it
improved the performance of the BERT-base QA
model on the SQuAD by 2.12 in EM, significantly
outperforming the state-of-the-art model. As fu-
ture work, we plan to extend our QAG model to a
meta-learning framework, for generalization over
diverse datasets.
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Appendix

A Derivation of Variational Lower Bound

Theorem. If we assume conditional independence
of y and zx, i.e., pθ(y|zx, zy, c) = pθ(y|zy, c),
log pθ(x,y|c) ≥ LHCVAE

Proof.

log pθ(x,y|c)

= log

∫
zx

∑
zy

pθ(x|zx,y, c)·

pθ(y|zx, zy, c)pψ(zy|zx, c)pψ(zx|c)dzx

= log

∫
zx

pθ(x|zx,y, c)pψ(zx|c)
qφ(zx|x, c)

qφ(zx|x, c)
·∑

zy

pθ(y|zy, c)pψ(zy|zx, c)
qφ(zy|zx,y, c)

qφ(zy|zx,y, c)
dzx

= log

∫
zx

pθ(x|zx,y, c)pψ(zx|c)
qφ(zx|x, c)

qφ(zx|x, c)

· Eqφ(zy|zx,y,c)

[
pθ(y|zy, c)pψ(zy|zx, c)

qφ(zy|zx,y, c)

]
dzx

= logEqφ(z|x,c){
pθ(x|zx,y, c)pψ(zx|c)

qφ(zx|x, c)
·

Eqφ(zy|zx,y,c)

[
pθ(y|zy, c)pψ(zy|zx, c)

qφ(zy|zx,y, c)

]
}

≥ Eqφ(z|x,c){log
pθ(x|zx,y, c)pψ(zx|c)

qφ(zx|x, c)
+

logEqφ(zy|zx,y,c)

[
pθ(y|zy, c)pψ(zy|zx, c)

qφ(zy|zx,y, c)

]
}

= Eqφ(z|x,c)[log pθ(x|zx,y, c)]

− DKL[qφ(zx|x, c)||pψ(zx|c)] + Eqφ(z|x,c){

logEqφ(zy|zx,y,c)

[
pθ(y|zy, c)pψ(zy|zx, c)

qφ(zy|zx,y, c)

]
}

≥ Eqφ(zx|x,c)[log pθ(x|zx,y, c)]

− DKL[qφ(zx|x, c)||pψ(zx|c)]

+ Eqφ(zx|x,c){Eqφ(zy|zx,y,c)[log pθ(y|zy, c)]

− DKL[qφ(zy|zx,y, c)||pψ(zy|zx, c)]}
≈ Eqφ(zx|x,c)[log pθ(x|zx,y, c)]

− DKL[qφ(zx|x, c)||pψ(zx|c)]

+ Eqφ(zy|zx,y,c)[log pθ(y|zy, c)]

− DKL[qφ(zy|zx,y, c)||pψ(zy|zx, c)]

B Datatset

The statistics and the data resource are summarized
in Table 10.
SQuAD We tokenize questions and contexts with
WordPiece tokenizer from BERT. To fairly com-
pare our proposed methods with the existing semi-
supervised QA, we follow Zhang and Bansal
(2019)’s split, which divides original development
set from SQuAD v1.1 (Rajpurkar et al., 2016) into
new validation set and test set. We adopt most of
the codes from Wolf et al. (2019) for preprocessing
data, training, and evaluating the BERT-base QA
model.
Natural Questions Other than the original Natu-
ral Questions (Kwiatkowski et al., 2019) dataset,
we use subset of the dataset provided by MRQA
shared task (Fisch et al., 2019) for extractive QA.
As semi-supervised setting with SQuAD, we split
the validation set provided from MRQA into half
for validation set and the others for test set. All
the tokens from question and context are tokenized
with WordPiece tokenizer from BERT. We gener-
ate QA pairs from context not containing html tag,
and evaluate QA model with the official MRQA
evaluation scripts.
TriviaQA For TriviaQA (Joshi et al., 2017), we
also use the training set from MRQA shared task,
and divide the development set from MRQA into
half for validation set and the other for test set. All
the tokens from question and context are tokenized
with WordPiece tokenizer from BERT. For evalu-
ation, we follow the MRQA’s official evaluation
procedure.
HarvestingQA3 We use paragraphs from Harvest-
ingQA dastaset (Du and Cardie, 2018) to generate
QA pairs for QA-based Evaluation (QAE) and Re-
verse QA-based Evaluation (R-QAE). For the base-
line QG models such as Maxout-QG and Semantic-
QG, we use the same answer spans from the dataset.
For the experiments of Maxout-QG baseline, we
train the model and generate new questions from
the context and answer, while the questions gener-
ated by Semantic-QG are provided by the authors
(Zhang and Bansal, 2019).

C Training Details

Maxout-QG We use Adam (Kingma and Ba, 2015)
optimizer with the batch size of 64 and set the
initial learning rate of 10−3. We always set the

3https://github.com/xinyadu/
harvestingQA

https://github.com/xinyadu/harvestingQA
https://github.com/xinyadu/harvestingQA
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Datasets Train (#) Valid (#) Source

SQuAD 86,588 10,507 Crowd-sourced questions from Wikipedia paragraph

Natural Questions 104,071 12,836 Questions from actual userfor searching Wikipedia paragraph

TriviaQA 74,160 7,785 Question and answer pairs authored by trivia enthusaists from the Web

HarvestQA 1,259,691 - Generated by neural networks from top-ranking 10,000 Wikipedia articles

Table 10: The statistics and the data source of SQuAD, Natural Questions, TriviaQA, and HarvestingQA.

Replace EM F1

F1 ≤ 0.0 82.4 89.39
F1 ≤ 20.0 83.11 89.65
F1 ≤ 40.0 83.32 89.79
F1 ≤ 60.0 83.20 89.78
F1 ≤ 80.0 83.09 89.75

Table 11: The effect of F1-based replacement strategy
in semi-supervised setting of SQuAD+H×100%. All
results are the performance on validation set of Zhang
and Bansal (2019).

beam size of 10 for decoding. We also evaluate the
Maxout-QG model on our SQuAD validation set
with BLEU4 (Papineni et al., 2002), and get 15.68
points.

Selection of Threshold for Replacement As men-
tioned in our paper, we use the threshold of 40.0
selected via cross-validation of the QA model per-
formance, using both the full SQuAD and Harvest-
ingQA dataset for QAG. The detailed selection pro-
cesses are as follows: 1) train QA model on only
human annotated data, 2) compute F1 score of gen-
erated QA pairs, and 3) if the F1 score is lower than
the threshold, replace the generated answer with the
prediction of QA model. We investigate the optimal
value of threshold among [20.0, 40.0, 60.0, 80.0]
using our validation set of SQuAD. Table 11 shows
the results of cross-validation on the validation
set. The optimal value of 40.0 is used for semi-
supervised experiments on Natural Questions and
TriviaQA. For fully unlabeled semi-supervised ex-
periments on Natural Questions and TriviaQA, the
QA model is only trained on SQuAD and used
to replace the synthetic QA pairs (denoted in our
paper as N×1-10, T×1-10).

Semi-supervised learning For the semi-
supervised learning experiment on SQuAD,
we follow Zhang and Bansal (2019)’s split for
a fair comparison. Specifically, we receive the
unique IDs for QA pairs from the authors and
use exactly the same validation and test set as
theirs. For the Natural Questions and TriviaQA

experiments, we use our own split as mentioned
in the above. We generate QA pairs from the
paragraphs of Wikipedia extracted by Du and
Cardie (2018) and train BERT-base QA model with
the synthetic data for two epochs. Then we further
train the model with human-annotated training data
for two more epochs. The catastrophic forgetting
reported in Zhang and Bansal (2019) does not
occur in our cases. We use Adam optimizer
(Kingma and Ba, 2015) with batch size 32 and
follow the learning rate scheduling as described
in (Devlin et al., 2019) with initial learning rate
2 · 10−5 and 3 · 10−5 for synthetic and human
annotated data, respectively.

D Qualitative Examples
The qualitative examples in Table 12, 13, 14 are
shown in the next page.
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Paragraph-1 Near Tamins-Reichenau the Anterior Rhine and the Posterior Rhine join and form the Rhine. . . . This section
is nearly 86km long, and descends from a height of 599m to 396m. It flows through a wide glacial alpine valley known as
the Rhine Valley (German: Rheintal). Near Sargans a natural dam, only a few metres high, . . . The Alpine Rhine begins
in the most western part of the Swiss canton of Graubünden, . . .

Q-1: how long is the rhine?
A-1: 86km long

Q-2: how large is the dam?
A-2: a few metres high

Q-3: where does the anterior rhine and the posterior rhine join the rhine?
A-3: Tamins-Reichneau

Q-4: what type of valley does the rhine flows through?
A-4: glacial alpine

Q-5: what is the rhine valley in german?
A-5: Rheintal

Q-6: where deos the alpine rhine begin?
A-7: Swiss canton of Graubünden

Paragraph-2 Victoria is the centre of dairy farming in Australia. It is home to 60% of Australia’s 3 million dairy cattle
and produces nearly two-thirds of the nation’s milk, almost 6.4 billion litres. The state also has 2.4 million beef cattle, with
more than 2.2 million cattle and calves slaughtered each year. In 2003–04, Victorian commercial fishing crews and
aquaculture industry produced 11,634 tonnes of seafood valued at nearly $109 million. . . .

Q-1: what industry produced 11,63 million tonnes of seafood in 2003-04 ?
A-1: aquaculture

Q-2: what type of cattle is consumed in Victoria?
A-2: beef

Q-3: in what year did victorian commercial fishing and aquaculture industry produce a large amount of seafood?
A-3: 2003–04

Q-4: how many cattle and calves each year are slaughtered annually?
A-4: 2.2 million

Q-5: how much of the nation’s milk is produced by the dairy?
A-5: two-thrids

Paragraph-3 A teacher’s role may vary among cultures. Teachers may provide instruction in literacy and numeracy,
craftsmanship or vocational training, the arts, religion, civics, community roles, or life skills.

Q-1: what do a teacher’s role vary?
A-1: culture

Q-2: what do teachers provide instruction in?
A-2: vocational training

Q-3: what is one thing a teacher may provide instruction for?
A-3: community roles

Q-4: what is one of the skills that teachers provide in?
A-4: life skills

Table 12: Examples of QA pairs generated by our Info-HCVAE. We sample multiple latent variables from pψ(·),
and feed them to generation networks. All the paragraphs are from validation set of SQuAD.
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Paragraph-1 Super bowl 50 was an american football game to determine the champion of the National Football League
(NFL) for the 2015 season. The American Football Conference (AFC) champion Denver Broncos defeated the National
Football Conference (NFC) champion Carolina Panthers 24 – 10 to earn their third super bowl title. . . .

GT which NFL team represented the AFC at super bowl 50?

Ours-1 what team did the American Football Conference represent?
Ours-2 who won the 2015 American Football Conference?
Ours-3 which team defeated the carolina panthers?
Ours-4 who defeated the panthers in 2015?
Ours-5 what team defeated the carolina panthers in the 2015 season?
Ours-6 who was the champion of the American Football League in the 2015 season?
Ours-7 what team won the 2015 American Football Conference?

Paragraph-2 . . . Some clergy offer healing services, while exorcism is an occasional practice by some clergy in the united
methodist church in Africa. . . .

GT in what country does some clergy in the umc occasionally practice exorcism?

Ours-1 in what country do some clergy in the united methodist church take place?
Ours-2 in what country is exorcism practice an occasional practice?
Ours-3 use of exorcism is an occasional practice in what country?
Ours-4 is exorcism usually an occasional practice in what country?

Paragraph-3 . . . , the city was the subject of a song , “walking into fresno” , written by hall of fame guitarist Bill Aken . . .

GT who wrote “walking in fresno”?

Ours-1 who wrote “walking into fresno”?
Ours-2 “walking into fresno” was written by whom?
Ours-3 the song “walking into fresno” was written by whom?

Table 13: Examples of one-to-many mapping of our Info-HCVAE. Answers are highlighted by pink. We sample
multiple question latent variables from pψ(zx | c), and feed them to question generation networks with a fixed
answer. GT denotes ground-truth question, and Seq2Seq denotes question generated by Maxout-QG. All the
paragraphs, ground truth questions, and answers are from validation set of SQuAD.
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Paragraph-1 Notre Dame is known for its competitive admissions, with the incoming class enrolling in fall 2015 admitting
3,577 from a pool of 18,156 (19.7%). The academic profile of the enrolled class continues to rate among the top 10 to 15
in the nation for national research universities. . . . 1,400 of the 3,577 (39.1% ) were admitted under the early action plan.

Ori1 Q where does notre dame rank in terms of academic profile among research universities in the us?
A the top 10 to 15 in the nation

Gen

Q where does the academic profile of notre dame rank?
A the top 10 to 15

Q what was the rate of the incoming class enrolling in the fall of 2015?
A 3,577 from a pool of 18,156 (19.7%)

Q how many students attended notre dame?
A 3,577

Ori2 Q what percentage of students at notre dame participated in the early action program?
A 39.1%

Paragraph-2 . . . begun as a one-page journal in September 1876, the scholastic magazine is issued twice monthly and . . .
In 1987, when some students believed that the observer began to show a . . . In spring 2008 an undergraduate journal for
political science research, beyond politics, made its debut.

Ori1 Q when did the scholastic magazine of notre dame begin publishing?
A september 1876

Gen

Q when was the scholastic magazine published?
A 1876

Q in what year did notre dame get its liberal newspaper?
A 1987

Q how often is the scholastic magazine published ?
A twice

Ori2 Q in what year did notre dame begin its undergraduate journal ?
A 2008

Paragraph-3 As at most other universities, notre dame’s students run a number of news media outlets. The nine student
- run outlets include . . . , and several magazines and journals. . . . . the dome yearbook is published annually. . . .

Ori1 Q what is the daily student paper at notre dame called?
A the observer

Gen

Q how many student media outlets are there at notre dame?
A nine student - run outlets include three

Q what type of media is the student paper at notre dame?
A a number of news media

Q how often is the dome published?
A annually

Q how many magazines are published at notre dame ?
A several

Ori2 Q how many student news papers are found at notre dame ?
A three

Table 14: QA pairs generated by interpolating between two latent codes encoded by our posterior networks. Ori1
and Ori2 are from training set of SQuAD.


