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Abstract

We propose a graph-based method to tackle
the dependency tree linearization task. We
formulate the task as a Traveling Salesman
Problem (TSP), and use a biaffine attention
model to calculate the edge costs. We fa-
cilitate the decoding by solving the TSP for
each subtree and combining the solution into
a projective tree. We then design a transi-
tion system as post-processing, inspired by
non-projective transition-based parsing, to ob-
tain non-projective sentences. Our proposed
method outperforms the state-of-the-art lin-
earizer while being 10 times faster in training
and decoding.

1 Introduction

Surface realization is the task of generating a sen-
tence from a syntactic or semantic representation.
In several shared tasks (Belz et al., 2011; Mille
et al., 2018, 2019), the input representations are
unordered dependency trees. The state-of-the-art
system (Yu et al., 2019a) in the Surface Realiza-
tion Shared Task 2019 (SR’19) takes a pipeline ap-
proach, where the first step is linearization, namely
ordering the tokens in the dependency tree. They
use a Tree-LSTM to encode each token with aware-
ness of the whole tree, then apply the divide-and-
conquer strategy to split the full tree into subtrees
and find the optimal order for each subtree using
beam search. Finally, the linearized subtrees are
combined into a full projective tree. The general
strategy is adapted from Bohnet et al. (2010).

In this work, we tackle linearization decoding in
a different way, by casting it as a Traveling Sales-
man Problem (TSP). Knight (1999) first formu-
lated the word ordering of the target language in
word-based machine translation as a TSP, where
the words are the nodes to traverse, and the log
probabilities of the bigrams are the edge costs.

Several works have followed this formulation.
Among others, Zaslavskiy et al. (2009) formulate
the word ordering in phrase-based machine trans-
lation as a TSP, and show that it achieves better
performance and speed than beam search decod-
ing with the same bigram language model. Horvat
and Byrne (2014) explore higher-order n-gram lan-
guage models for TSP-based word ordering, which
transforms into a much larger TSP graph. All of the
aforementioned works operate on a bag of words
without syntax, which is a TSP graph of non-trivial
size with little information about the internal struc-
ture. Much effort has been put into incorporating
more powerful decoding algorithms such as Integer
Programming (Germann et al., 2001) and Dynamic
Programming (Tillmann and Ney, 2003).

Our work differs from the previous work on
TSP-based word ordering in several aspects. (1)
Linearization is a special case of word ordering
with syntax, where we can use a tree-structured en-
coder to provide better representation of the tokens.
(2) We adopt the divide-and-conquer strategy to
break down the full tree into subtrees and order
each subtree separately, which is faster and more
reliable with an approximate decoder. (3) We ap-
ply deep biaffine attention (Dozat and Manning,
2016), which has yielded great improvements in
dependency parsing, and reinterpret it as a bigram
language model to compute edge costs for the TSP.

In this paper, we solve the dependency tree lin-
earization task as a TSP. With the help of Tree-
LSTM to encode the tree and biaffine attention as a
bigram language model, we can use a greedy TSP
solver to linearize the tree effectively. Furthermore,
the divide-and-conquer strategy greatly reduces the
search space but introduces the projectivity restric-
tion, which we remedy with a transition-based re-
ordering system. As a result, the proposed lin-
earizer outperforms the previous state-of-the-art
model both in quality and speed.
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2 Graph-based Linearization

2.1 System Overview

We follow the idea in Knight (1999) to treat lin-
earization as a TSP. Under the TSP formulation,
we need to calculate the cost from every node i to
every other node j, which can be interpreted as the
log likelihood of the bigram (i, j). We use the bi-
affine attention model (Dozat and Manning, 2016)
to obtain the costs, and use an off-the-shelf TSP
solver, OR-Tools1, to decode the TSP.

To facilitate the approximate decoding of this
NP-hard problem, we follow the divide-and-
conquer strategy in Bohnet et al. (2010) of splitting
the tree into subtrees, and decoding each subtree
separately. There are pros and cons of this ap-
proach: on the one hand, the search space is much
smaller so that a greedy TSP solver can find good
solutions in reasonable time; on the other hand,
it restricts the output to be projective, i.e., non-
projective sentences can never be produced.

To remedy the projectivity restriction, we intro-
duce a post-processing step using a simple transi-
tion system with only two transitions, swap and
shift, to sort the linearized projective trees into po-
tentially non-projective ones.

This system is an extention of our previous work
(Yu et al., 2019a). We use the same encoder and
hyperparameters (see Appendix A) and only exper-
iment with the decoders. The code is available at
the first author’s web page.2

As an overview, Figure 1 illustrates our pipeline
for the linearization task, with an unordered de-
pendency tree as input, and a linearized sentence
as output, which is potentially non-projective, i.e.,
with crossing dependency arcs.

To solve the task, we (1) divide the tree into
subtrees, (2) linearize each subtree by solving a
TSP, (3) combine the linearized subtrees into an
projective tree, and (4) use the swap system to
obtain a non-projective tree.

2.2 TSP Solver

To formulate the linearization task as a TSP, we
use a node to represent each token in the tree, and
an extra node with index 0 as both the origin and
destination, which is interpreted as the boundaries

1https://developers.google.com/
optimization

2https://www.ims.uni-stuttgart.de/en/
institute/team/Yu-00010/
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Figure 1: An overview of the linearization system.
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Figure 2: The graph and matrix views of a TSP.

in the output sequence. Figure 2 demonstrates a de-
coded TSP graph from its edge cost matrix, where
the output sequence is “<s> let us get <s>”.

We use the routing solver of OR-Tools to solve
the TSP given the edge costs. It is a generic opti-
mization library, unlike the more specialized and
optimized TSP solvers such as Concorde (Apple-
gate et al., 2006), but it enables imposing extra
word order constraints described in §2.6, and can
be easily extended to other constraints.

Among all the first solution strategies provided
in OR-Tools, we found GLOBAL CHEAPEST ARC
to perform the best, which selects a valid edge
with the lowest cost at every step until a full path
is found. For the sake of efficiency, we use the
greedy metaheuristic GREEDY DESCENT to refine
the first solutions, which converges to local optima
in very short time. In practice, it works extremely
well in combination with the greedy training de-
scribed in §2.4.

https://developers.google.com/optimization
https://developers.google.com/optimization
https://www.ims.uni-stuttgart.de/en/institute/team/Yu-00010/
https://www.ims.uni-stuttgart.de/en/institute/team/Yu-00010/
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More advanced metaheuristics such as
GUIDED LOCAL SEARCH (Voudouris and Tsang,
1999) could find better solutions, but also require
much more decoding time, it is thus less practical
for real-time generation tasks. We do not use it in
the default setting, but include it in the analysis to
demonstrate the effectiveness of the training.

2.3 Scoring Model
We use the biaffine attention model (Dozat and
Manning, 2016) to calculate the TSP edge costs.
First, we obtain the representation for each token by
concatenating the embeddings of the features, then
encode the tree information with a bidirectional
Tree-LSTM, as described in Yu et al. (2019b):

v◦i = v
(lem)
i ⊕ v

(pos)
i ⊕ v

(dep)
i ⊕ v

(mor)
i (1)

xi = Tree-LSTM(v◦0...v
◦
n)i (2)

The parameters of the decoder consist of two
Multi-Layer Perceptrons (MLP(fr) and MLP(to))
and a biaffine matrix (W). We use the MLPs to
obtain different views of the token representation
as the first and second token in the bigram:

h
(fr)
i = MLP(fr)(xi) (3)

h
(to)
i = MLP(to)(xi) (4)

We then apply the biaffine transformation on
the vectors of the first word h

(fr)
i and the second

word h
(to)
j to compute the score si,j of each bigram

(i, j), where W is the weight matrix of size (k +

1)× (k + 1), and k is the size of hfri and htoj :

si,j = (h
(fr)
i ⊕ 1)×W × (h

(to)
j ⊕ 1)> (5)

In the actual computation, we parallelize Equa-
tion 5, where S is the output score matrix of size
n× n, and n is the number of tokens:

S = (H(fr) ⊕ 1)×W × (H(to) ⊕ 1)> (6)

Finally, we turn the score matrix into a non-
negative cost matrix for the TSP solver:

C = max (S)− S (7)

Our model is inspired by the biaffine dependency
parser of Dozat and Manning (2016), but stands in
contrast in many aspects. They use a bidirectional
LSTM to encode the sequential information of the
tokens, and the biaffine attention itself does not

model the sequence. Each cell si,j in their output
matrix S is interpreted as the score of a dependency
arc (i, j). They use a Maximal Spanning Tree al-
gorithm to obtain a tree that maximizes the total
score of the arcs in the tree.

In the case of linearization, our input and out-
put are the opposite to theirs. The input has no
sequential but syntactic information, encoded by
the bidirectional Tree-LSTM. Each cell si,j in the
output matrix S is interpreted as the score of the
bigram (i, j). We use a TSP solver to obtain a
traversal of the tokens by minimizing the total edge
costs, i.e., maximizing the total bigram scores.

2.4 Training Objective

We use a greedy training objective to train the bi-
affine scoring model, namely we enforce the score
of each bigram (i, j) in the correct sequence z to
be higher than any other bigrams in the same row
or in the same column in the matrix by a margin:

L =
∑

(i,j)∈z

(
∑
j′ 6=j

max(0, 1 + si,j′ − si,j)

+
∑
i′ 6=i

max(0, 1 + si′,j − si,j)) (8)

This objective aims to maximizing the score of
each correct bigram (i, j) in both directions, essen-
tially logP (j|i) and logP (i|j), where the cells in
the same row corresponds to all possible tokens fol-
lowing i, and the cells in the column corresponds
to all possible tokens preceding j.

The objective is greedy in the sense that it up-
dates more than “necessary” to decode the correct
path. We contrast it to the structured loss in most
graph-based dependency parsers (McDonald et al.,
2005; Kiperwasser and Goldberg, 2016), which up-
dates the scores of the correct path z against the
highest scoring incorrect path z′:

L′ = max(0, 1+ max
z′ 6=z

∑
(i′,j′)∈z′

si′,j′ −
∑

(i,j)∈z

si,j)

(9)

The greedy objective for the TSP has two main
advantages: (1) it does not require decoding during
training, which saves training time; (2) it pushes
the scores of each correct bigram to be the high-
est in the row and the column, which facilitates
the greedy solver (GLOBAL CHEAPEST ARC) to
find a good initial solution. In fact, if the objective
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reaches 0, the greedy solver is guaranteed to find
the optimal solution, since at each step, the cheap-
est arc is always a correct bigram instead of any
other bigram in the same row or column.

2.5 Generating Non-Projective Trees

If we directly linearize the full tree, the output is
naturally unrestricted, i.e., possibly non-projective.
However, when we linearize each subtree sepa-
rately in order to reduce the search space, as in
the proposed method, the reconstructed output is
restricted to be projective (Bohnet et al., 2010).

To relax the projectivity restriction, we design
a transition system to reorder projective trees into
non-projective trees as a post-processing step, in-
spired by Nivre (2009) but working in the opposite
way. It is essentially a reduced version of their tran-
sition system, removing the attachment transitions
and keeping only swap and shift.

In the transition system (as shown in Table 1),
a configuration consists of a stack σ, which is ini-
tially empty, and a buffer β, which initially holds
all input tokens. The shift transition moves the
front of the buffer to the top of the stack, and the
swap transition moves the top of the stack back to
the second place in the buffer. When all tokens
are moved from the buffer to the stack, the proce-
dure terminates. To prevent the model predicting
infinite shift-swap loops, we only allow swap if
the initial index of the top of the stack is smaller
than the front of the buffer. The worst-case com-
plexity of the sorting is quadratic to the number
of tokens, however, since trees in natural language
mostly only contain very few non-projective arcs,
the transition system works in expected linear time,
as shown in Nivre (2009).

We then implement a model to predict the tran-
sitions given the configurations. We use two
LSTMs to dynamically encode the stack from left
to right (LSTMσ) and the buffer from right to left
(LSTMβ). We then concatenate the two outputs
and use a MLP to predict the next transition.

When a shift is performed, we update LSTMσ

state with the vector of the shifted token as the new
stack representation, and the new buffer represen-
tation is the LSTMβ output of the new front token;
when a swap is performed, the new stack represen-
tation is the LSTMσ output of the new top token,
and the new buffer representation is recalculated
by feeding the now second and first token in the
buffer to the LSTMβ state of the third token.

Transition Before After
shift (σ, [i|β]) → ([σ|i], β)
swap ([σ|i], [j|β]) → (σ, [j|i|β])

Table 1: The shift-swap transition system.
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Figure 3: An illustration of the swap model. (1) shows
a configuration [1 2 | 3 4 5 6], where the stack contains
1 and 2, and the buffer contains 3, 4, 5 and 6, and the
model predicts shift to move 3 from the buffer to the
stack; (2) is the resulted configuration, and the model
predicts swap, which moves 3 back to the buffer behind
4, as shown in (3). The solid black arrows represent
the computation already done in the previous steps, and
the dashed red arrows represent the new computation
needed for the current step.

Figure 3 illustrates the model under the transi-
tion system, where the arrows to the right represent
LSTMσ, the arrows to the left represent LSTMβ ,
and the arrows between the stack and the buffer
represent the MLP. After each transition, little com-
putation is needed to represent the new stack and
buffer, marked with the red dashed line. The exam-
ple illustrates the steps to modify the configuration
[1 2 | 3 4 5 6] into [1 2 | 4 3 5 6].

Note that the transition system is sound and com-
plete, which means there is always a sequence of
transitions to sort any sequence into any reordering.
In other words, the transition system on its own
could also linearize the tree by taking a random
permutation as input. However, due to the noisy in-
put order, it is very difficult for the LSTM model to
learn good representations for the stack and buffer
and predict correct transitions (cf. Vinyals et al.
(2015) for the discussion on encoding a set with
an LSTM). In contrast, when we only use this sys-
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tem to reorder a linearized projective tree as post-
processing, where input sequence is meaningful
and consistent, it is much easier to learn.

Using the swap system as a post-processing step
stands in contrast to Bohnet et al. (2012), where
they pre-process the tree by lifting the arcs so
that the correct word order could form a projec-
tive tree. These two approaches draw inspiration
from the non-projective parsing in Nivre (2009)
and the pseudo-projective parsing in Nivre and
Nilsson (2005) respectively. We argue that our
post-processing approach is more convenient since
there is no need to change the syntactic annotation
in the original tree, and it is much easier to evaluate
the effectiveness of the sorting model.

2.6 Relative Word Order Constraints

In the SR’19 dataset, some relative word order in-
formation is given, which indicates e.g. the order
of the conjuncts in the coordination. Since the or-
der in a coordination is generally arbitrary (at least
syntactically), it will thus introduce randomness
in the single reference evaluation. We believe that
using such information leads to more accurate eval-
uation, and therefore by default always use these
constraints in the comparison.

The constraints does not specify direct adjacency,
but only general precedence relations. For example,
to order the nodes {1, 2, 3, 4, 5} with the constraint
2 ≺ 3 ≺ 1 and 4 ≺ 5, a valid sequence could be
[2, 4, 3, 5, 1], while [4, 5, 2, 1, 3] is invalid.

To incorporate such constraints in the solver, we
introduce an additional variable associated with
each node in the routing problem, where the value
is incremented by 1 after each step. In other words,
if a node is visited in the n-th step, then the associ-
ated variable will have the value n. Then we add
inequality constraints about those variables that are
specified in the word order information into the
routing problem and let the solver find the path that
satisfies the constraints.

In practice, the solver can always find a solu-
tion to linearize the subtrees with the constraints.
However, it sometimes cannot find any solution to
directly linearize the full tree within the time limit
(1-10% of the cases depending on the treebank),
because there are more nodes and more constraints
in the full tree. In this case, we simply remove the
constraints and rerun the solver.

3 Experiments

3.1 Data and Baselines
We use the datasets from the Surface Realization
2019 Shared Task (Mille et al., 2019) in our exper-
iments, which includes 11 languages in 20 tree-
banks from the Universal Dependencies (Nivre
et al., 2016). We experiment on the shallow track,
i.e., all tokens in the output are present in the in-
put tree. We only report the BLEU score (Pap-
ineni et al., 2002) as the evaluation metric, since
we mostly evaluate on the lemma level, where the
metrics involving word forms are irrelevant.

As baselines for the final evaluation, we use sev-
eral available linearizers by Bohnet et al. (2010)
(B10), Puduppully et al. (2016) (P16) and Yu et al.
(2019a) (Y19). B10, P16 and our linearizer all use
the same inflection and contraction models, trained
with the same hyperparameters as in Y19, and we
compare to the reported shared task results of Y19.

3.2 Main Results
Table 2 shows the performance of different lineariz-
ers, where beam is the baseline beam-search lin-
earizer as in Yu et al. (2019b) with default hyperpa-
rameters, full is the TSP decoder on the full tree
level, sub is the TSP decoder on the subtree level,
and +swap is sub post-processed with reordering.
We test the decoders under two conditions: with-
out word order constraints (-constraints) and
with word order constraints (+constraints).
Columns 2-9 show the BLEU scores on lemmata on
the development set, and in the last 4 columns are
the BLEU scores on inflected and contracted word
forms on the test sets with the official evaluation
script of SR’19.

While both only generating projective sentences,
the sub decoder outperforms the baseline beam
decoder by 0.6 BLEU points without word order
constraints and 0.3 BLEU points with constraints.
Note that the beam search decoder uses an LSTM
to score the sequences, which is essentially an un-
limited language model, while the TSP decoders
only uses a bigram language model.

While comparing the two TSP decoders, sub
performs on average higher than full, while
full performs better on treebanks with more non-
projective sentences, since it is not restricted. With-
out word order constraints, full even slightly out-
performs sub. The reason that full performs rel-
atively worse with constraints is that it sometimes
has to remove the constraints to find a solution.
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-constraints +constraints Final Test
%NP beam full sub +swap beam full sub +swap B10 P16 Y19 Ours

ar padt 0.48 85.09 85.00 85.67 85.67 86.74 85.54 86.74 86.74 56.62 56.17 64.90 67.02
en ewt 0.62 85.19 85.30 85.99 85.99 88.38 87.40 88.01 88.03 72.97 74.53 82.98 84.08
en gum 1.00 84.75 85.20 85.86 86.00 86.96 86.53 87.43 87.55 69.94 70.88 83.84 84.72
en lines 3.81 79.23 81.60 80.04 81.63 81.71 82.92 81.97 83.51 63.15 67.67 81.00 81.55
en partut 0.34 87.05 87.90 86.73 86.73 88.13 87.03 88.77 88.77 80.64 70.97 87.25 85.52
es ancora 0.88 83.68 85.00 84.21 84.70 84.88 85.29 85.55 86.09 80.80 69.73 83.70 85.34
es gsd 0.51 83.68 84.70 84.26 84.31 85.70 85.62 86.29 86.34 79.18 70.34 82.98 82.78
fr gsd 0.61 87.13 88.00 87.58 87.60 89.41 88.88 89.68 89.77 79.34 72.25 83.95 83.34
fr partut 0.46 87.56 88.40 90.38 90.38 90.07 89.76 90.58 90.58 75.13 64.20 83.38 83.21
fr sequoia 0.27 87.20 85.50 87.13 87.29 89.74 86.85 89.44 89.60 77.48 62.67 84.52 83.81
hi hdtb 1.20 83.14 85.10 83.82 85.37 85.04 86.32 85.50 87.06 77.89 74.70 80.56 82.54
id gsd 0.57 81.65 81.80 81.90 82.06 85.56 82.45 86.30 86.44 77.90 76.51 85.34 85.57
ja gsd 0.14 90.66 90.10 90.50 90.50 92.83 91.65 92.83 92.83 83.67 81.21 87.69 87.87
ko gsd 3.10 76.29 76.60 75.73 77.21 79.26 79.39 79.47 80.87 61.76 65.89 74.19 75.12
ko kaist 3.59 79.24 84.00 80.52 83.18 80.29 84.50 80.84 83.53 63.48 71.41 73.93 77.50
pt bosque 2.95 82.57 84.40 83.04 84.02 83.97 85.46 84.40 85.19 75.41 67.91 77.75 79.15
pt gsd 0.44 87.45 88.40 87.91 88.15 88.96 89.12 89.83 90.06 74.44 68.11 75.93 77.00
ru gsd 0.84 74.50 73.80 74.99 75.06 79.07 75.37 78.86 78.87 63.32 62.93 71.23 71.27
ru syntagrus 1.14 77.95 78.90 79.23 79.39 81.00 80.77 81.59 81.71 74.28 71.50 76.94 78.39
zh gsd 0.06 81.83 80.20 82.25 82.25 83.29 79.65 82.93 82.93 77.88 70.55 83.85 84.76

AVG 1.15 83.29 84.04 83.89 84.34 85.55 85.03 85.85 86.32 73.26 69.51 80.30 81.03

Table 2: Percentage of non-projective arcs (column 1); BLEU scores on lemmata on the development set for
different linearization decoders, with linear order constraints (column 2-5) and without linear order constraints
(column 6-9); and BLEU scores on inflected words on the test set compared with several baseline systems (column
10-13), where B10 denotes Bohnet et al. (2010), P16 denotes Puduppully et al. (2016), and Y19 denotes Yu et al.
(2019a). The best result in each group is marked with bold face.

The sub+swap decoder eliminates the projec-
tivity restriction, closing the performance gap to
full for non-projective treebanks, and it does not
hurt the performance on the projective treebanks.

In the last four columns we compare our
sub+swap linearizer on the test set for the full
pipeline with three external baselines, including
the best system in the SR’19 shared task (Y19).
Our system outperforms B10 and P16 by a large
margin of 7 and 11 BLEU points. Note that their
off-the-shelf systems are not designed to use word
order constraints and morphological tags, which
would account for a difference of about 3 points
(see the effect of constraints in Table 2 and fea-
ture ablation in §3.7). Under the same condition,
our system outperforms Y19 on most of the tree-
banks and on average by 0.7, because of (1) a better
projective decoder and (2) the non-projective post-
processing step. Furthermore, our system is much
faster than Y19, see the comparison in §3.8.

3.3 Error Analysis

To illustrate the characteristics of different TSP
decoders, we analyze their performance on sen-
tences with different lengths and percentages of
non-projective arcs.

Figure 4a shows the BLEU score of different
TSP decoders with respect to the sentence length,
averaged over all sentences in the development sets.
The sub model performs quite stably across the
sentences with different lengths, while the full
model performs much worse on longer sentences.3

This confirms our hypothesis that the divide-and-
conquer strategy of the subtree decoder can re-
duce search errors for large TSP problems. Post-
processing with the swap system (tsp+swap)
consistently improvements tsp across all sentence
lengths.

3Note that the very short sentences have even lower BLEU
score, this is caused by the smoothing function in the BLEU
evaluation, which gives a low score even for exact match.
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Figure 4: BLEU score with respect to the sentence
length and the percentage of non-projective arcs.

Figure 4b shows the BLEU score with respect
to the percentage of non-projective arcs in the gold
tree, averaged over all sentences in the development
sets. Clearly, sub performs lower than full for
sentences with more non-projective arcs due to the
projectivity restriction, while the overall BLEU
score of sub is higher, since 99% of the arcs and
90% of the sentences are projective. With the help
of the swap system, sub+swap closes the gap to
full on the non-projective sentences.

In sum, the sub+swap model shows clear ad-
vantages over the other models since it is less prone
to search error due to the reduced TSP size and free
from the projectivity restriction, it is thus the best
of both worlds.

3.4 Training Objective

As described in §2.4, we use a greedy training ob-
jective to train the biaffine model, namely we cal-
culate a hinge loss of the correct bigram against

row+col row col path

sub 85.85 85.56 85.60 85.13
full 85.03 84.36 84.38 80.96

Table 3: BLEU scores of different decoders with differ-
ent training objectives.

BLEU ∆BLEU
gold pred rand gold pred rand

gold 98.50 86.32 2.63 +0.67 +0.47 +0.13
pred 97.52 85.78 3.61 -0.32 -0.07 +1.11
rand 87.83 81.97 71.36 -10.01 -3.88 +68.86

Table 4: The change in BLEU scores after applying the
transition-based sorting models that are trained (row)
and tested (column) under different conditions.

all other bigrams in the same row and in the same
column. This is in contrast to the structured loss,
which is calculated between the gold sequence and
the predicted sequence.

This contrast is similar to the two different train-
ing objective in Dozat and Manning (2016) against
Kiperwasser and Goldberg (2016) for graph-based
dependency parsing. We experiment with the struc-
tured loss, following Kiperwasser and Goldberg
(2016), where we also apply loss augmented infer-
ence (Taskar et al., 2005), i.e., adding a constant for
all the bigrams that are not in the gold sequence.

We also experiment with only updating against
the row or the column, which could be thought
of as the bigram language model only in one di-
rection, while updating against both is training a
bidirectional language model.

Table 3 shows the results, where we train the
sub and full models with different objectives:
row+col is the default one, row and col only
update against the row or the column, and path
updates the gold path against the predicted path.

The results are clear: for both sub and full
models, training on both directions is better than
training on one direction, and the greedy objective
is better than the structured objective. The gap be-
tween the bidirectional greedy objective and others
is larger in full than in sub, since full solves a
larger TSP, where the greedy training is even more
important for effective greedy decoding.
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3.5 Transition-based Sorting

As discussed in §2.5, we use the transition system
only for post-processing the linearized projective
sentences, although the transition system itself is
theoretically able to sort a random sequence. The
question is whether the model is able to learn to
handle the random input.

We experiment with different training and testing
scenarios of the sorting models. They are trained in
three scenarios, namely to sort (1) gold projective
sentences into correct (potentially non-projective)
sentences, noted as gold; (2) predicted projec-
tive sentences, where the sentences are obtained
by 5-fold jackknifing on the training set using the
sub model, noted as pred; and (3) random se-
quences, where the input is always shuffled during
training, noted as rand. The models are then ap-
plied to sort (1) gold projective sentences (gold);
(2) predicted projective sentences from the sub
model (pred); and (3) random permutation of the
tokens (rand). In the main experiment, the way
we use the transition system corresponds to the
gold-pred scenario.

Table 4 shows the BLEU scores on the develop-
ment set averaged over all treebanks. We also show
the change of BLEU scores from the input to the
output (∆BLEU) in different scenarios.

First, the gold model improves the input in
all scenarios, especially the gold-pred scenario
used in the main experiment brings 0.47 BLEU
points improvement. Interestingly, the pred
model from jackknifing does not improve the per-
formance, while usually training on the data with
erroneous prediction should prevent overfitting to
the gold data. We conjecture the reason could be
that the model is overfitting to fixing the particu-
lar errors in the predicted training data instead of
learning to produce non-projective sentences.

Purely using the transition system for lineariza-
tion (rand-rand) works to some extent, but per-
forms lower than the baseline by a large gap for
several reasons. First, it imposes an arbitrary order
in the input which is a suboptimal way to represent
a bag of word. Second, learning to sort random
permutation requires a lot more training instances
to generalize. Finally, it takes on average O(n2)
steps, which also increases the chance of error prop-
agation. In contrast, sorting a projective tree does
not have any of these disadvantages.

Generally, when the training and testing sce-
narios are not aligned, the performance is always

beam sub full swap

+tree 85.55 85.85 85.03 71.36
-tree 78.31 74.17 35.82 19.74
∆ -7.24 -11.68 -49.21 -51.62

Table 5: Comparing the decoders with and without the
Tree-LSTM encoder.

worse due to the mismatched bias of transitions.
For example, gold-rand barely changes the
random input since it mostly predicts shift, and
rand-gold predicts swap too often such that the
outcome is even worse than the input sentence.

3.6 Syntax Ablation
The success of the simple bigram language model
and greedy TSP decoding relies heavily on the Tree-
LSTM encoding. To demonstrate its importance,
we remove the tree encoding for each linearizer,
i.e., they only receive the token level features as
the representation. We experiment with four lin-
earizers: apart from beam, sub and full as in
the main experiments, we also include the swap
linearizer that is trained to sort random input se-
quences. The condition +tree is the default case,
while in -tree we do not use the tree encoding.
Note that in the latter case, beam and sub still
use the tree information to split the tree into sub-
trees, while full and swap do not use the tree
information in any way.

The results are shown in Table 5. Without the
tree encoder, the performance drop in sub is larger
than beam, which suggests that sub is more de-
pendent on the good representation of the Tree-
LSTM encoder, since its scoring function is es-
sentially a bigram language model, which would
be much less expressive than the LSTM in beam
if syntax is absent. This result draws an interest-
ing analogy to the fact that first-order graph-based
dependency parsers (Kiperwasser and Goldberg,
2016; Dozat and Manning, 2016) also outperform
the transition-based counterparts with a simpler
scoring model but without error propagation.

The much larger drop in full and swap em-
phasizes the importance of the inductive bias in-
troduced by the divide-and-conquer strategy, since
natural languages are predominantly projective.

Generally, the syntax ablation experiment high-
lights the crucial difference between our work and
the original idea by Knight (1999), namely we use
contextualized bigrams in our TSP model, which
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is much more expressive than the vanilla version.
Consider the subtree with the words “this” and
“with” in Figure 1, a vanilla bigram model would
calculate a much higher score for “with this” than
“this with”, while a contextualized bigram model
could be aware that it is part of a rather special
syntactic construction in English.

3.7 Feature Ablation
To understand how much each feature contributes
to the linearization task, we perform ablation exper-
iments on the selection of features. In the default
setting of our models, we use the lemma, UPOS,
dependency relation, and morphological tags to
encode each token. We experiment with turning
off each feature for the sub linearizer, as well as
only using one feature, and the results are in Ta-
ble 6. The results suggest that the UPOS tags and
morphological tags do not provide much additional
information and could be dropped if simplicity is
desired. In contrast, the lemmata and dependency
relations are crucial to determine the word order,
since the performance drops considerably without
them.

none lemma dep upos morph

without 85.85 83.12 82.49 85.56 85.58
with only - 79.51 81.11 76.14 79.31

Table 6: Feature ablation experiments, where we test
removing one feature (first row) and using only one fea-
ture (second row).

3.8 Performance vs. Speed
By default, we use a greedy TSP solver, which al-
ready yields satisfactory performance. We then
make additional experiments with a more opti-
mized metaheuristic (guided local search) to see if
better performance can be gained in exchange for
more decoding time. With the guided local search,
we set the search limit to 1 second or 100 solutions
for each subtree, and 10 seconds or 1000 solutions
for the full tree. We also compare to the beam
search linearizer with varying beam sizes from 1 to
64. The results are shown in Figure 5, where the
decoding time is measured on a single CPU core.

Generally, all greedy TSP solvers outperform
the Pareto front of the beam search decoders. The
greedy solver performs almost as well as the opti-
mized solver for the subtree TSP (85.85 vs. 85.91),
while it performs clearly worse for the full tree
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Figure 5: The speed (on a log scale) and BLEU score
for different decoders, where the dots are projective de-
coders, and the crosses are non-projective decoders.

TSP (85.03 vs. 85.85). This contrast again demon-
strates that the divide-and-conquer strategy indeed
greatly simplifies the problem for the greedy solver.
Post-processing with the swap system only slightly
increase the decoding time (in total 50ms per sen-
tence), but considerably improves the performance.

4 Conclusion

In this paper, we revisit the idea of treating word
ordering as a TSP, but unlike the common bag-
of-words scenario, the words have an underlying
syntactic structure. We demonstrate that with the
Tree-LSTM encoder, the biaffine scoring model,
the divide-and-conquer strategy, and a transition-
based sorting system, we can linearize a depen-
dency tree with high speed and quality and without
the projectivity restriction. We show with various
ablation experiments that all of the components are
crucial for the success of the TSP-based linearizer.

Our work emphasizes the importance of syntax
in the word ordering task. We discussed many
connections and similarities between linearization
and parsing. We believe that quite generally, sys-
tems for solving one task can benefit from the other
task’s view on syntactic structure. One possibility
to capitalize on these synergies is to explore data
augmentation methods to select beneficial extra
training data in an unsupervised fashion.
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A Model Details and Hyperparameters

Our system is a modification on Yu et al. (2019a),
where the encoder architecture and hyperparam-
eters are identical to theirs, and we only change
the decoder. The system is implemented with the
DyNet library (Neubig et al., 2017). Training and
testing are conducted on a single CPU core, where
the average training time is under 1 hour and the
average decoding speed is 50ms per sentence by
the proposed model (Tree-LSTM encoder + subtree
TSP decoder + swap post-processing).

Hyperparameter Value

lemma dim 64
UPOS dim 32
morphological feature dim 32
dependency label dim 32
all other hidden dims 128
all LSTM layers 1
beam size 32
avg. token feature params 1.0× 106

Tree-LSTM params 7.4× 105

beam decoder params 1.6× 106

TSP decoder params 6.6× 104

swap decoder params 6.4× 105

batch size 1
dropout none
max training step 1× 106

optimizer Adam
Adam α 0.001
Adam β1 0.9
Adam β2 0.999

Table 7: Model hyperparameters.


