Peer Reviewing data at ACL

Proposal Iryna Gurevych, Ilia Kuznetsov UKP Lab, Technical University of Darmstadt

Preliminary Remarks

- Peer review is a promising area for NLP
 - As application
 - As text type and domain
- However, reviewing data is sensitive and there are concerns:
 - Privacy, anonymity, copyright, dissemination of unpublished results...
- We want to
 - Start a constructive discussion
 - Determine core issues
 - Discuss solutions for peer reviewing data collection at *ACL

• Based on the full-text Proposal

Executive Summary

- We want to start a constructive discussion on peer reviewing data in the ACL community
- We propose a <u>numerical</u> repository to enable meta-studies of peer reviewing at ACL, at no privacy risk
- We collect the main issues and risks associated with peer reviewing <u>texts</u> and propose solutions to address the challenges related to Privacy, Anonymity, Consent, Copyright and Workload
- We report on a pilot peer reviewing data collection campaign at COLING-2020

Outline

- Motivation
- Numerical data: *ACL meta-science repository
- Textual data: Challenges and Solutions
 - Anonymity

"I want to stay anonymous to the authors and reviewers"

- Privacy and Security
 "I don't want negative feedback to be published, and I worry about my research ideas"
- Copyright

"Who owns the data, how can this data be used and who gets the credit"

• Consent

"We don't want to trick the reviewers and authors or get them into trouble"

- Management overhead "PCs are very busy"
- Pilot study at COLING-2020

Motivation

Why peer review

- Publication overload in research. Peer reviewing is a bottleneck.
 - Time-consuming and expensive
 - Less experienced researchers involved
 - Bias and miscalibration
- Full-AI peer review is neither feasible nor desirable
- Al-assisted peer review can make the process faster and robust to bias

- Peer reviews are sensitive. The few existing datasets lack clear terms of use and copyright
 → the reviewers are not protected; the content is not protected
 - \rightarrow building upon the data is troublesome
- We need better workflows based on **explicit**, **informed** consent, clear licensing and secure data storage strategies

Why *ACL

- Benefits of the home community
 - Control over reviewing setups
 - Access to data for own research
 - Short way to applications, no domain shift
 - Easy to annotate compared to out-of-domain, e.g. biology or sociology
 - \circ Better awareness of NLP-related risks etc. \rightarrow *informed* consent
- Peer reviews as text genre are interesting from the NLP/CL perspective
- Liberal copyright for papers (ACL Anthology)

• Develop datasets, approaches and tools for own use within the ACL, then export to other communities

General workflow and parties involved

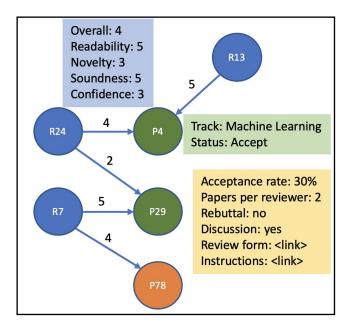
- <u>Authors</u> submit blind-submission versions
- <u>Reviewers</u> provide the initial reviews (text + scores)
- [optional] Rebuttal
 - Authors and reviewers debate in the rebuttal stage
 - Reviewers might update their reviews
- [optional] Discussion
 - Reviewers discuss among themselves in the discussion stage
 - Reviewers might update their reviews
- Program chairs aggregate the reviews and make a final decision
 - [optional] Program chairs prepare meta-reviews
- Authors of the submitted papers provide camera-ready
- External public

Data involved

- Blind submissions
- Initial reviews (text and scores)
- Rebuttal texts
- Discussion board logs
- Final reviews (after Rebuttal and Discussion)
- Meta-reviews
- Camera-ready versions
- Metadata

Numerical data *ACL Meta-Science Repository

Idea


- Most issues come from peer review texts, unpublished work contents and reviewer identities
- However, there is a lot of purely numerical data generated by each *ACL event. It is anonymous and publicly reported by PCs at each conference
 - Acceptance rates
 - Score distributions
 - Workflows (rebuttal, discussion)
 - # submissions per reviewer
 - Etc.
- Collected each time and not publicly available in machine-readable formats
- We propose to standardize the conference reporting and make numerical data publicly available on a dedicated website

Data to publish

- Scores (overall, aspect, confidence)
- Anonymous reviewer (R152) and paper (P241) identifiers
- Reviewer-paper graph (anonymous)
- Conference metadata
 - Rebuttal/Discussion yes or no
 - Acceptance rates
 - The reviewing template used
 - # reviews per reviewer, # reviewers per paper
 - etc.

- Principled way to test peer reviewing workflows and policies, monitor consistency, study score-related biases, etc. Enables meta-studies.
- Useful for NLP community and for bridging to the meta-science and general peer reviewing research outside NLP

Data example

Implementation

- Can be almost entirely automated
- No anonymity / privacy / copyright issues; just numbers
- Dedicated website with numerical data from past events, basic statistics and visualizations.
 - For the community
 - For researchers in meta-science and science-of-science
 - For program chairs to generate reports
 - For program chairs to pick the workflows and policies that work
- UKP Lab will manage data collection and the website
 - if proven useful, the ACL community may consider overtaking the service for long-term maintenance.

• Possible extras

- Citation counts and other scientometrics for accepted papers
- Monitoring the state of rolling review
- Auxiliary supervision for score-based NLP models

<u>Textual data</u> Challenges and Solutions

Overview of Challenges

• Anonymity

"I want to stay anonymous to the authors and reviewers"

• Privacy and Security

"I don't want negative feedback to be published, and I worry about my research ideas"

Copyright

"Who owns the data, how can this data be used and who gets the credit"

• Consent

"We don't want to trick the reviewers and authors or get them into trouble"

Management overhead

"PCs are very busy"

Anonymity (D1)

- In double-blind review authors and reviewers are anonymous to each other
- Challenges:
 - Some reviewers sign their reviews (identity open to the authors but <u>not</u> to the public)
 - Reviewer identities might be disclosed in the discussion and meta-reviews to the other reviewers, but <u>not</u> to the authors and <u>not</u> to the public
 - Authors of accepted papers are identifiable via ACL Anthology (anyway)
 - Authors of rejected papers are identifiable via arXiv or subsequent publication (anyway)
- Solutions:
 - No metadata linking to the reviewer or author identities is collected.
 Identity can be disclosed voluntarily as part of the license attribution (D3).
 - Reviewers are notified in advance to make an informed decision about signing the reviews
 - Reviewers and authors are notified about the potential risks of de-anonymization via author profiling techniques by malicious parties

Anonymity (D1)

- Option 1: Reviewer identity entirely hidden
- Option 2: Global reviewer ID within venue
 - Anonymize the reviewers using a random, but stable identifier, e.g. Ilia Kuznetsov \rightarrow R162
 - Allows grouping reviews from the same reviewer together. Enables:
 - Preference learning
 - Reviewer-level tasks (as opposed to single-review-level tasks)
 - Slightly increases anonymity risk
 - Challenge: anonymity leak in one review (e.g. signed despite being informed) exposes the authorship of other reviews
 - Solutions / Options:
 - Notify the reviewers in advance
 - Global ID only consistent within one venue / event / time span
 - Only use the Global ID in the numerical dataset

Privacy and Idea Safety (D2)

- Most data in the current peer reviewing workflow is private.
- Two main challenges in making it public:
 - Reviews contain negative feedback
 - Leaking unpublished ideas (through blind submissions or through reviews)
- Data sensitivity depends on data type and the acceptance status of the paper:

	neg. feedback	idea safety
blind submission / accept	N/A	no risk (public)
reviews and rebuttals / accept	low risk	no risk (public)
discussion boards	<mark>medium risk</mark>	medium risk
reviews and rebuttals / reject	high risk	high risk
blind submission / reject	N/A	high risk

Privacy and Idea Safety (D2)

• Solutions

- Only collect data for accepted papers
- Explicit, informed consent from both authors and reviewers.
- Authors agree to publication of the reviews.
- Later option for rejected papers: a privacy period of <u>TWO YEARS</u>
 - Minimizes the risk of leaking research ideas from rejected papers
 - Reduces the risk of negative feedback impact

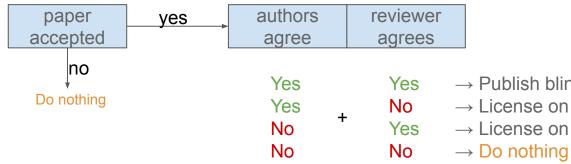
• Data access for the community

- Open datasets for <u>accepted</u> papers and their reviews (if consented to);
- Secure storage and protected experimental environment for cases where reviewers agree but authors disagree; later also usable for rejected papers
 - Data stored on a secured server and accessed in a shared task environment, e.g. TIRA
- Sharing data derivatives
 - Models trained on data can be shared, at a slight theoretical privacy risk

Copyright (D3)

- OpenReview terms of service and licensing in progress; ACL data is private (reviews, blind submissions) or CC-BY (published papers).
- Challenges
 - Need a licence to enable research on the datasets
 - CC requires attribution, but we want to keep reviews and blind submissions anonymous
 - CC is irrevocable
- Solution (see the <u>doc</u> for details)
 - Copyright © 2021 <u>administered by</u> the Association for Computational Linguistics (ACL) <u>on behalf of</u> ACL content contributors: Professor John Smith, Dr. Susan Lee, Dr. Michael Jones, and <u>other contributors who</u> <u>wish to remain anonymous</u>. Content is made available under a [Creative Commons Attribution 4.0 International License [creativecommons.org]].
 - Contributors transfer a license to ACL and have an option to voluntarily disclose their identity. The agreement must make it clear that the CC licenses are **irrevocable** unless there is breach.

Consent (D4)


- The contributors must explicitly consent to the data collection, be informed about the purposes and the associated risks, and given agency over their data (GDPR).
- Challenges
 - Skewing the distribution towards accepted papers and benevolent reviews
 - Obtaining consent during the event creates a stress situation; obtaining consent after the event reduces the turnaround
 - Consent can be withdrawn. This would affects the derivative datasets and harm reproducibility
- Solutions
 - Explicit consent on paper/venue basis, <u>no</u> default opt-in.
 Make it clear that donating the data is optional.
 - Notification about future consent collection <u>before</u> the reviewing begins.
 Consent collection <u>after</u> the acceptance notification.
 - **Conflict with licensing**: License cannot be withdrawn, but consent can.
 - For GDPR, a License (D3) provides stronger legal basis for data processing than consent.

Workload (D5)

- Challenge:
 - Getting the license and extracting the data creates additional work for the program chairs.
- Solution:
 - External workflow managed by the community / moderator
 - Consent collection integrated into the conference management system or managed via external provider.
 - Forms and most data manipulations can be <u>easily automated</u>. Automate whenever possible.
 - High automation potential with transition to OpenReview.

Summary Workflow (D6)

- Based on the above, we propose the following general workflow as the first iteration.
- All participants are <u>notified about the future data collection in advance</u>.
- <u>Upon review completion</u>, we ask reviewers for their reviews.
- <u>After the acceptance decisions</u>, we ask the authors of **accepted** papers for their blind submission, and permission to publish peer reviews for their paper.
- If reviewers agree to publish their reviews, but the authors don't want that, the reviews are put to a vault (e.g. TIRA) and will only be used for internal and testing purposes ~ shared task evaluation setup

- \rightarrow Publish blind submission and reviews in a dataset
- \rightarrow License on blind submission, drop the reviews
- \rightarrow License on reviews, protected dataset to vault

COLING-2020 Pilot

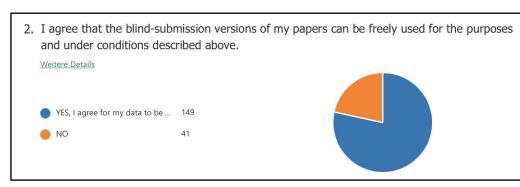
Pilot overview

- Test-drive for textual and numerical data collection at COLING-2020
- Uses an earlier version of the workflow
- Goals
 - Test the workflows and measure the PC workload
 - Get community feedback
 - Collect data with clear consent and copyright status
- Implemented measures
 - Anonymity: no personal data, global reviewer identifier, only reviews before discussion
 - **Privacy**: explicit mention of risks in the consent form; only approach authors of accepted papers, but reviewers for all papers; 2-year privacy period
 - **Copyright**: CC-0
 - **Consent**: <u>explicit consent</u> from authors and reviewers, notification after acceptance deadline
 - **Workload** for PC: two e-mail messages; authorize access via SoftConf; negotiating the consent forms (since no standard form is yet available)

Consent forms

Reviewers

https://forms.office.com/Pages/ResponsePage.aspx?id=HBOHA8qCXkqX_VQgmzB6s4Y3gOE-fypItIQ_eix2fkBUN1pJUjIFUTBVNTFT UkpVR05GTk1MNkYyNC4u


Authors

https://forms.office.com/Pages/ResponsePage.aspx?id=HBOHA8qCXkqX_VQgmzB6s4Y3gOE-fypItIQ_eix2fkBUMVIENzNHOUVOT0Z JVIFOWDhJVzNPRUtDUS4u

Results

- Out of 1.5k reviewers, ~500 participated
- Out of ~580 authors of accepted papers, 190 participated. Half of the authors who gave consent also provided TeX sources.
- Collected 1300 review texts, 140 blind submission PDFs and 80 TeX sources
- ~ equivalent to ICLR-2017 but with clear copyright and consent

Discussion

- Generally encouraging feedback, useful questions and workflow details from the community
- Heads-up e-mail before consent collection is important, so that people keep it in mind while writing their reviews
- Discussion boards' logs are questionable as they contain informal discussions between reviewers
- Turnaround could be higher (~30% survey participation)

Summary

Recap

- We want to start a constructive discussion on peer reviewing data in the ACL community
- We propose a <u>numerical</u> repository to enable meta-studies of peer reviewing at ACL, at no privacy risk
- We collect the main issues and risks associated with peer reviewing <u>texts</u> and propose solutions to address the challenges related to Privacy, Anonymity, Consent, Copyright and Workload
- We report on a pilot peer reviewing data collection campaign at COLING-2020

Questions and discussion points

- *ACL Numerical repository?
- What are the remaining issues and concerns regarding the peer reviewing text collection and how can they be addressed?
- Is the proposed summary workflow good?
- What is the opinion of the community on the issues and solutions?
- How to make the data most useful to the ACL community?