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Abstract

As research on biomedical text mining is
shifting focus from simple binary relations
to more expressive event representations,
extraction performance drops due to the
increase in complexity. Recently intro-
duced data sets specifically targeting static
relations between named entities and do-
main terms have been suggested to enable
a better representation of the biological
processes underlying annotated events and
opportunities for addressing their com-
plexity. In this paper, we present the first
study of integrating these static relations
with event data with the aim of enhanc-
ing event extraction performance. While
obtaining promising results, we will argue
that an event extraction framework will
benefit most from this new data when tak-
ing intrinsic differences between various
event types into account.

1 Introduction

Recently, biomedical text mining tools have
evolved from extracting simple binary relations
between genes or proteins to a more expressive
event representation (Kim et al., 2009). Further-
more, new data sets have been developed target-
ing relations between genes and gene products
(GGPs) and a broader category of entities, cov-
ering terms that can not be annotated as named
entities (NEs) but that are still highly relevant
for biomedical information extraction (Ohta et al.,
2009b). In contrast to relations involving change
or causality, the annotation for this data covers re-
lations such as part-of, here termed “static rela-
tions” (SR) (Pyysalo et al., 2009).

Tissue-specific expression of interleukin-3
expression event GGP

is mediated via cis-acting elements located 
regulation event               term part-of GGP 

within 315 base pairs of the transcription start.
term part-of GGP

Figure 1: A sentence from PMID:8662845, show-
ing how the event data set (single line) and the SR
data set (double line) offer complementary infor-
mation, enabling a more precise model of the bio-
logical reality.

As an example, Figure 1 depicts a sentence con-
taining complementary annotations from the event
data set and the SR data. The event annotation
indicates an expression event involving the GGP
“interleukin-3”. Furthermore, regulation of this
expression event is stated by the trigger word “me-
diated”. In addition, the SR annotation marks two
terms that refer to parts of the GGP, namely “cis-
acting elements” and “transcription starts”. These
two terms provide more detailed information on
the regulation event. Thus, by combining the two
types of annotation, a text mining algorithm will
be able to provide a more detailed representation
of the extracted information. This would be in par-
ticular beneficial in practical applications such as
abstract summarization or integration of the pre-
dictions into complex regulatory pathways.

In addition to providing enhanced represen-
tation of biological processes, the SR data set
also offers interesting opportunities to improve on
event extraction. As an example, consider the sen-
tence presented in Figure 2, in which “c-Rel” and
“p50” are both annotated as being subunits of the
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We show here that c-Rel binds to
GGP_1   binding event

kappa B sites as heterodimers with p50.
GGP_1 subunit-of Term GGP_2

GGP_2 subunit-of Term

Figure 2: A sentence from PMID:1372388, show-
ing how SR data (double line) can provide strong
clues for the extraction of biomolecular events
(double line) from text.

term “heterodimers”. The SR data thus provides
strong clues for the extraction of a Binding event
involving both c-Rel and p50.

During the last few years, event extraction
has gained much interest in the field of nat-
ural language processing (NLP) of biomedical
text (Pyysalo et al., 2007; Kim et al., 2008; Kim
et al., 2009). However, owing to the more com-
plex nature of this task setting, performance rates
are lower than for the extraction of simple bi-
nary relations. The currently best performing
framework for event extraction obtains 53.29% F-
score (Miwa et al., 2010), which is considerably
lower than the performance reported for extrac-
tion of protein-protein interaction relations, rang-
ing between 65% and 87% depending on the data
set used for evaluation (Miwa et al., 2009).

In this paper, we will study how data on static
relations can be applied to improve event extrac-
tion performance. First, we describe the various
data sets (Section 2) and the text mining frame-
work that was applied (Section 3). The main con-
tributions of this paper are presented in Section 4,
in which we study how static relation information
can be integrated into an event extraction frame-
work to enhance extraction performance. Finally,
Section 5 presents the main conclusions of this
work.

2 Data

In this section, we provide an overview of the two
main data sets used in this work: event annotation
(Section 2.1) and static relation annotation (Sec-
tion 2.2).

2.1 Event Data

The BioNLP’09 Shared Task data, derived from
the GENIA Event corpus (Kim et al., 2008), de-

Event type Args Train Devel Test
Gene expression T 1738 356 722
Transcription T 576 82 137
Protein catabolism T 110 21 14
Localization T 265 53 174
Phosphorylation T 169 47 139
Binding T+ 887 249 349
Regulation T, C 961 173 292
Positive regulation T, C 2847 618 987
Negative regulation T, C 1062 196 379
TOTAL - 8615 1795 3193

Table 1: BioNLP ST events, primary argument
types and data statistics. Arguments abbreviate for
(T)heme and (C)ause, with + marking arguments
that can occur multiple times for an event. We re-
fer to the task definition for details.

fines nine types of biomolecular events and is di-
vided into three data sets: training data, develop-
ment data and final test data, covering 800, 150
and 260 PubMed abstracts respectively. The event
types and their statistics in the three data sets are
shown in Table 1.

In the shared task setting, participants were pro-
vided with the gold annotations for Gene/Gene
Product (GGP) named entities, and for all three
data sets the texts of the abstracts and the gold
GGP annotations are publicly available. However,
while full gold event annotation is available for the
training and development data sets, the shared task
organizers have chosen not to release the gold an-
notation for the test data set. Instead, access to
overall results for system predictions is provided
through an online interface. This setup, adopted in
part following a similar design by the organizers of
the LLL challenge (Nédellec, 2005), is argued to
reduce the possibility of overfitting to the test data
and assure that evaluations are performed identi-
cally, thus maintaining comparability of results.

For the current study, involving detailed analy-
sis of the interrelationships of two classes of anno-
tations, the lack of access to the gold annotations
of the test set rules this data set out as a poten-
tial target of study. Consequently, we exclude the
blind test data set from consideration and use the
development set as a test set.

To simplify the analysis, we further focus our
efforts in this study on simple events involving
only the given GGPs as participants. In the full
shared task, events of the three Regulation types
may take events as arguments, resulting in re-
cursive event structures. These event types were
found to be the most difficult to extract in the
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SR type Examples
term variant-of GGP [RFX5 fusion protein], [Tax mutants], [I kappa B gamma isoforms]

term part-of GGP [murine B29 promoter], [c-fos regulatory region], [transactivation domain] of Stat6,
the nearby [J element] of the human DPA gene,
the [consensus NF-kappa B binding site] of the E-selectin gene

GGP member-of term The [Epstein-Barr virus oncoprotein] latent infection membrane protein 1,
[Ikaros family members], PU.1 is a transcription factor belonging to the [Ets-family]

GGP subunit-of term the [NF-kappa B complex] contains both RelA and p50,
Human TAFII 105 is a cell type-specific [TFIID] subunit, [c-Rel/p65 heterodimers]

Table 2: Training examples of some of the SR types, including both noun phrase relations as well as
relations between nominals. GGPs are underlined and terms are delimited by square brackets.

shared task evaluation (Kim et al., 2009). Fur-
thermore, their inclusion introduces a number of
complications for evaluation as well as analysis,
as failure to extract a referenced event implies fail-
ure to extract events in which they appear as argu-
ments. We note that even with the limitations of
considering only the smallest of the three data sets
and excluding Regulation events from considera-
tion, the ST data still contains over 800 develop-
ment test events for use in the analysis.

2.2 Static Relation Data

The data on relations is drawn from two recently
introduced data sets. Both data sets cover specifi-
cally static relations where one of the participants
is a GGP and the other a non-GGP term. The
GGPs are drawn from the data introduced in (Ohta
et al., 2009a) and the terms from the GENIA cor-
pus term annotation (Kim et al., 2003), excluding
GGPs. The first data set, introduced in (Pyysalo et
al., 2009), covers static relations involving GENIA
corpus terms that are annotated as participants
in the events targeted in the BioNLP’09 shared
task. The second data set, introduced in (Ohta et
al., 2009b), contains annotation for relations hold-
ing between terms and GGPs embedded in those
terms. In this study, we will use the non-embedded
relations from the former data set, referring to this
data as RBN for “Relations Between Nominals”
in recognition of the similarity of the task setting
represented by this data set and the task of learn-
ing semantic relations between nominals, as stud-
ied e.g. in SemEval (Girju et al., 2007; Hendrickx
et al., 2009). We use all of the latter data set,
below referred to as NPR for “Noun Phrase Re-
lations”. The NPR data set extends on the em-
bedded part of the data introduced by (Pyysalo
et al., 2009), increasing the coverage of terms in-

cluded and the granularity of the annotated event
types. While RBN only differentiates between a
domain-specific Variant relation and four different
part-whole relations, in NPR these are refined into
more than 20 different types.

To apply these data sets together in a single
framework, it was necessary to resolve the differ-
ences in the annotated relation types. First, as the
finer-grained NPR types are organized in a hier-
archy that includes the four part-whole relations
of the RBN categorization as intermediate types
(see Fig. 1 in Ohta et al. (2009b)), we collapsed
the subtypes of each into these supertypes. While
this removes some potentially useful distinctions,
many of the finer-grained types are arguably un-
necessarily detailed for the purposes of the event
extraction task which, for example, makes no dis-
tinctions between events involving different gene
components. Furthermore, the NPR annotations
also define an Object-Variant class with multiple
subtypes, but as these were judged too diverse to
process uniformly, we did not collapse these sub-
types as was done for part-whole relations. Rather,
we divided them into “near” and “far” variants by
a rough “functional distance” to the related GGP,
as suggested by Ohta et al. (2009b). The relations
GGP-Modified Protein, GGP-Isoform and GGP-
Mutant were accepted into the “near” set, expected
to provide positive features for inclusion in events,
and the remaining subtypes into the “far” set, ex-
pected to provide negative indicators.

In addition to the primary annotation covering
static relations, the RBN annotation only recog-
nizes a mixed “other relation/out” category, used
to annotate both GGP-term pairs for which the
stated relation is not one of the targeted types (e.g.
a causal relation) and pairs for which no relation is
stated. Due to the heterogeneity of this category,
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it is difficult to make use of these annotations, and
we have chosen not to consider them in this work.

By contrast, the NPR annotation also subdi-
vides the “other relation” category into five spe-
cific types, providing an opportunity to also use
the part of the data not strictly involving static re-
lations. We judged the classes labeled Functional,
Experimental Method and Diagnosis and Ther-
apeutics to involve terms where contained GGP
names are unlikely to be participants in stated
events and thus provide features that could serve as
potentially useful negative indicators for event ex-
traction. As an example, the Functional category
consists of GGP-term pairs such as GGP inhibitor
and GGP antibody, where the term references an
entity separate from the GGP, identified through
a functional or causal relation to the GGP. As
such terms occur in contexts similar to ones stat-
ing events involving the GGP, explicit marking of
these cases could improve precision. Consider, for
example, GGP1 binds GGP2, GGP1 binds GGP2

promoter, GGP1 binds GGP2 inhibitor and GGP1

binds GGP2 antagonist: a binding event involving
GGP1 and GGP2 should be extracted for the first
two statements but not the latter two.

Table 2 lists some interesting examples of static
relation grouped by type, including both noun
phrase relations as well as relations between nom-
inals. The consolidated data combining the two
static relations - related data sets are available at
the GENIA project webpage.1

3 Methods

The text mining tool used for all analyses in this
paper is based on the event extraction frame-
work of Van Landeghem et al. (2009), which
was designed specifically for participation in the
BioNLP’09 Shared Task. In this framework, trig-
gers are discovered in text by using automati-
cally curated dictionaries. Subsequently, candi-
date events are formed by combining these triggers
with an appropriate number of GGPs co-occurring
in the same sentence. For each distinct event type,
a classifier is then built using all training examples
for that specific type. Final predictions are merged
for all types, forming a complex interaction graph
for each article in the test set.

To distinguish between positive instances and
negatives, the framework extracts rich feature vec-

1http://www-tsujii.is.s.u-tokyo.ac.jp/
GENIA
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Figure 3: Dependency graph for the sentence “We
show here that c-Rel binds to kappa B sites as het-
erodimers with p50”. Words of the sentence form
the nodes of the graph, while edges denote their
syntactic dependencies.

tors by analyzing lexical and syntactic information
from the training data. Subsequently, a support
vector machine (SVM) is built with these training
patterns. The patterns include trigrams, bag-of-
word features, vertex walks and information about
the event trigger. As part of the current study dis-
cusses the extension and generalization of these
feature patterns (Section 4.4), we will briefly dis-
cuss the various types in this section.

To derive syntactic patterns, dependency pars-
ing is applied using the Stanford parser (Klein and
Manning, 2003; De Marneffe et al., 2006). Specif-
ically, for each candidate event, the smallest sub-
graph is built including the relevant nodes for the
trigger and the GGP names. Each edge in this sub-
graph then gives rise to a pattern including the in-
formation from the connecting nodes (or vertices)
in combination with the syntactic relation speci-
fied by the edge. Trigger words and GGP names
are blinded by replacing their text with the strings
protx and trigger (respectively), resulting in highly
general features.

Figure 3 depicts an exemplary dependency
graph. For the Binding event between c-Rel and
p50, the following vertex walks would be ex-
tracted: “trigger nsubj protx”, “trigger prep-as het-
erodimer” and “heterodimer prep-with protx”.
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Events Training Dev. test
Pos. SR data 1190 32% 227 28%
Neg. SR data 841 22% 207 26%
All SR data 1635 44% 350 43%

Table 3: Number of events that can be linked to at
least one static relation, including explicitly anno-
tated “near miss” negative annotations, also show-
ing percentage of all gold-standard events.

Furthermore, lexical information is provided by
bag-of-word (BOW) features and trigrams. BOW
features incorporate all words occurring as nodes
in the dependency sub-graph. They include highly
informative words such as “promoter”. Trigrams
are formed by combining three consecutive words
in the sub-sentence delimited by the trigger and
GGP offsets in text. They are capable of captur-
ing common phrases such as “physical association
with”.

Finally, the lexical tokens of the event trigger
are highly relevant to determine the plausibility of
the event being a correct one. For example, “se-
cretion” points to a Localization event, but more
general words often lead to false candidate events,
such as “present”. The part of speech tags of the
trigger words are also included as separate fea-
tures.

During feature generation, all lexical patterns
are stemmed using the Porter stemming algo-
rithm (Porter, 1980), creating even more general
features and reducing sparseness of the feature
vectors.

4 Experiments

This section describes a thorough study on how
data on static relations can be integrated into an
event extraction framework. First, we will analyze
the amount of useful complementary annotations
across both data sets (Section 4.1). Next, we de-
scribe the generation and evaluation of new candi-
date events using terms involved in static relations,
in an effort to boost recall of the event predictions
(Section 4.2). To additionally improve on preci-
sion, we have implemented a false positive filter
exploiting SR annotations of GGPs involved in re-
lations judged to serve as negative indicators, such
as “GGP inhibitor” (Section 4.3). Finally, Section
4.4 details experiments on the creation of more ex-
tensive features for event extraction by including
static relation data.

Predicted Percentage
instances of data set

Gene expression 63 17.70%
Transcription 34 41.46%

Protein catabolism 4 19.05%
Phosphorylation 20 42.55%

Localization 4 7.55%
Binding 73 29.44%

All events 198 24.54%

Table 4: Maximal recall performance of event in-
stances involving at least one non-NE term as ar-
gument. These terms are functioning as aliases for
the GGPs they are positively associated with.

4.1 Analysis of complementary data across
the two data sets

To assess the usability of the SR data set for event
extraction, we first analyze the amount of comple-
mentary annotations across the two data sets. On
the document level, the static relations data con-
tains some annotation for 87.6% of all training set
articles and for 94.67% of the development test
set, including both positive static relations as well
as explicitly negated ones. Most articles from the
event data set thus involve terms at least poten-
tially involved in static relations.

Analyzing the overlap in more detail, we de-
termined the number of events that could benefit
from adding SR data by counting the number of
events for which at least one GGP is also involved
in a static relation (either a positive or a negative
one). Table 3 shows the results of this evalua-
tion. In the training data, 1635 events involve at
least one GGP with SR annotation, which is 44%
of all events in the gold-standard annotation. For
the development test set, the number is 350 out of
the 808 gold standard events, i.e. 43% of events.
These development set events in particular will be
the subject of this study.

4.2 Terms as aliases for related GGPs

Our first application of static relations in an event
extraction framework involves the use of non-NE
terms appearing in the SR data set as aliases for the
GGPs they are positively associated with. In the
event extraction framework, new candidate events
can thus be formed by treating the terms as GGPs,
and mapping them back to the real GGPs after
classification. This procedure is motivated by the
definition of the various SR types and the under-
lying biological processes. For example, if a com-
plex is known to activate the expression of a cer-
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Recall Precision F-score
Gene expression 11.24% 81.63% 19.75%

Transcription 20.73% 89.47% 33.66%
Protein catabolism 19.05% 100.00% 32.00%
Phosphorylation 36.17% 100.00% 53.12%

Localization 3.77% 25.00% 6.56%
Binding 12.50% 45.59% 19.62%

All events 13.75% 67.27% 22.84%

Table 5: Performance of event instances involv-
ing at least one non-NE term as argument. These
terms are functioning as aliases for the GGPs they
are positively associated with.

tain target GGP, then the various subunits of this
complex can be annotated as participants in that
event.

Obviously, this approach has some intrinsic lim-
itations as not all GGPs occurring as arguments
in events have a corresponding term that could be
used as alias. However, from Table 3 it is clear
that it should still be possible to extract 227 gold
standard cases. To test the limitation, we have
used the event extraction framework detailed in
Section 3, removing the SVM classifier from the
pipeline and simply labeling all candidate events
as positive predictions. The result indicates that
the framework is capable of retrieving 198 of the
227 gold standard cases (Table 4). The 29 missing
events are due to trigger words not appearing (fre-
quently) in the training set and thus missing from
the dictionary, preventing the event to be formed
as a candidate in the framework.

Our results thus show that nearly 25% of all
events are potentially retrievable by using non-NE
terms as aliases for GGPs. However, the analy-
sis also indicates that in this approach, some event
types are much easier to extract than others. For
example, less than 8% of Localization events can
be found with this setup, while maximal recall for
Phosphorylation events is over 40%. These re-
sults reflect the intrinsic differences between event
types and the ways in which they are typically ex-
pressed, and suggest that it should be beneficial
for event extraction to take these differences into
account when incorporating static relations.

Having established an upper bound for recall, a
subsequent experiment involves treating the newly
created instances as normal candidate events. For
classification, we use an SVM trained on regular
candidate events involving GGPs, as this ensures
sufficient training material.

Both lexical and syntactic patterns are expected

Baseline Merged
predictions predictions

Gene expression 77.01% 77.56%
Transcription 63.41% 64.24%

Protein catabolism 86.36% 86.36%
Phosphorylation 70.10% 76.47%

Localization 80.00% 76.77%
Binding 38.69% 40.52%

All events 64.71% 65.33%
All events (precision) 69.11% 67.19%

All events (recall) 60.84% 63.57%

Table 6: Performance of the event extraction
framework. First column: using only normal
events involving GGPs (“baseline”). Second col-
umn: merging the new predictions (Table 5) with
the first ones. All performance rates indicate F-
score, except for the last two rows.

to be similar for events involving either non-NE
terms or GGPs. To test this hypothesis, we have
run the event-extraction pipeline for these new in-
stances. Evaluation is performed with the stan-
dard evaluation script provided by the BioNLP’09
Shared Task organizers, which measures the per-
centage of true events amongst all predictions
(precision), the percentage of gold-standard events
recovered (recall) and the harmonic mean of these
two metrics (F-score). The results are detailed in
Table 5. While we have already established that
recall is subject to severe limitations (Table 4), we
note in particular the high precision rates of the
predictions. In particular, four out of six event
types achieve a precision rate higher than 80%.

To allow for a meaningful comparison, these re-
sults should be put into perspective by merging the
new predictions with the predictions of a baseline
extractor and comparing against this baseline (Ta-
ble 6). This analysis reveals interesting results:
while overall performance increases slightly from
64.71% to 65.33% F-score, this trend is not com-
mon to all event types. For instance, prediction of
Localization drops 3.23% points F-score. Consid-
ering the maximum recall results, this is not en-
tirely surprising and confirms the hypothesis that
the prediction of Localization events will not ben-
efit from static relation data in this approach.

However, we do observe a considerable increase
in performance for Phosphorylation (6.37% points
F-score) events and some increase for Binding
events (1.83% points F-score). This performance
boost is mainly caused by an increase in recall
(10.64% and 4.43% points, respectively). When
considering all protein events, recall is increased
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from 60.84% to 63.57% (Table 6, last row). These
results clearly indicate that the inclusion of static
relations can improve recall while retaining and
even slightly improving general performance.

4.3 Using static relations to filter false
positive events

To further improve event extraction performance,
we have designed a false-positive (FP) filter using
specific categories of relations serving as negative
indicators for event extraction. In particular, we
have used the “far variants” and Functional rela-
tion annotations, as described in Section 2.2. For
each such relation, we add the GGP involved to
the FP filter, as the GGP should not participate in
any event. Thus, for example, the GGP in “GGP
antibodies” would be filtered as the GGP is con-
sidered too far removed from the containing term
to be a participant in any event in the context.

In the development test set, this strategy has au-
tomatically identified 24 relevant GGP mentions
that should not be annotated as being involved in
any event. Even though this number is relatively
small, we aim at designing a high specificity FP
filter while relying on the SVM classifier to solve
more ambiguous cases.

Applying the FP filter to the baseline result de-
tailed in Table 6, we find that 3 events are dis-
carded from the set of predictions. All three in-
stances represented false positives; two of them
were Binding events and one a Gene expression
event. Overall precision and F-score increased by
0.30% points and 0.13% points, respectively.

4.4 Extended feature representation
incorporating information on static
relations

The last type of experiment aims to boost both
precision and recall by substantially extending the
feature generation module for event extraction us-
ing the newly introduced SR data. Table 3 shows
that such an enhanced feature representation could
influence 1190 events in the training data (1635
events including negative annotations) and 227
events in the development test data (350 including
negative), covering a significant part of the data
set.

Building further on the feature generation mod-
ule described in Section 3, we have added a range
of new features to the feature vectors while also
providing enhanced generalization of existing fea-
tures. Generalization is crucial for the text mining

framework as it enables the extraction of relations
from new contexts and forms of statements.

First, for each term involved in a static rela-
tion with a GGP, the string of the term is included
as a separate feature. This generates relation-
associated features such as “tyrosine”, which is
strongly correlated with Phosphorylation events.
For terms spanning multiple tokens, we addition-
ally include each token as a separate feature, cap-
turing commonly used words such as “promoter”
or “receptor”. Each distinct feature is linked to its
specific relation type, such as Part-of or Member-
collection (Section 2.2). To make use of annota-
tion for “near-miss” negative cases, we generate
features also for these relations, marking each fea-
ture to identify whether it was derived from a pos-
itive or negative annotation.

Additionally, we introduced a new feature type
expressing whether or not the trigger of the event
is equal to a term related to one or more GGPs in-
volved in the event. As an example, suppose the
candidate event is triggered by the word “homod-
imer”. If the GGP involved is annotated as being a
subunit of this homodimer, this provides a strong
clue for a positive event. Similarly, the explicit
negation of the existence of any static relation in-
dicates a negative event.

Apart from these new features, we have also in-
vestigated the use of static relations to create more
general lexical patterns. In particular, we have ad-
justed the lexical information in the feature vector
by blinding terms involved in relevant relations,
depending on the specific type of relation. For
each such term, the whole term string is replaced
by one word, expressing the type of the static re-
lation and whether the relation is positive or neg-
ative. This results in more general patterns such
as “inhibit prep-to partx” (vertex walk) or “activ
in nonpartx” (trigram). In Figure 3, “heterodimer”
would be blinded as “complexx” as both c-Rel and
p50 are members of this complex.

Initial experiments with the extended feature
representation showed that an increase in perfor-
mance could be obtained on the development test
set, achieving 61.34% recall, 69.58% precision
and 65.20% F-score. However, it also became
clear that not all event types benefit from the new
features. Surprisingly, Binding is one such exam-
ple. We hypothesize that this is mainly due to the
intrinsic complexity of Binding events, requiring
an even more advanced feature representation.
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Baseline New
predictions predictions

Gene expression 77.01% 78.06%
Transcription 63.41% 63.80%

Protein catabolism 86.36% 86.36%
Phosphorylation 70.10% 76.29%

Localization 80.00% 84.21%
Binding 38.69% 38.34%

All events 64.71% 65.73%
All events (precision) 69.11% 69.99%

All events (recall) 60.84% 61.96%

Table 7: Performance of the event extraction
framework. First column: using the baseline fea-
ture representation. Second column: using the
extended feature representation. All performance
rates indicate F-score, except for the last two rows.

To take the inherent differences between vari-
ous event types into account, we selected the opti-
mal set of features for each type. In a new experi-
ment, the feature generation step thus depends on
the event type under consideration. Table 7 details
the results of this optimization: an overall F-score
of 65.73% is achieved. Similar to the experiments
in Section 4.2, the F-score for the prediction of
Phosphorylation events increases by 6.19% points.
Additionally, in this experiment we obtain an in-
crease of 4.21% points in F-score for Localization
events, even though we were unable to improve
on them when using terms as aliases for additional
candidate events (Section 4.2). Additional exper-
iments suggested the reason to be that while the
Localization event type in general does not ben-
efit from positive static relations, negative static
relations seem to provide strong clues to the SVM
classifier.

5 Conclusion

We have presented the first study on the appli-
cability of static relations for event prediction
in biomedical texts. While data on static rela-
tions can offer a more detailed representation of
biomolecular events, it can also help to boost
the performance of event prediction. We have
performed three sets of experiments to investi-
gate these opportunities. First, we have designed
new candidate events by treating non-NE terms
as aliases for the GGPs they are associated with.
By augmenting the normal event predictions with
predictions for these new candidates, we have es-
tablished a considerable increase in recall. Next,
we have implemented a false positive filter to im-
prove precision, by exploiting annotation for re-

lations judged to imply only distant associations
of the GGP and the enclosing term. Finally, the
last type of experiment involves integrating com-
plementary data on static relations to obtain more
informative feature vectors for candidate events.
Results show that both recall and precision can be
increased slightly by this last, more complex con-
figuration.

During the experiments, it has become clear that
there are important differences between the data
sets of distinct event types. For example, we have
found that Phosphorylation events benefit the most
from added static relations data, while Localiza-
tion events can be enhanced using only features
of negative static relation annotations. For some
event types, such as Protein catabolism, the cur-
rent techniques for integration of static relations
do not generate a performance boost. However,
our findings pave the way for experiments involv-
ing more detailed representations, taking the in-
trinsic properties of the various event types into
account and combining the various ways of inte-
grating the new information. We regard these op-
portunities as promising future work.

Finally, having established the potential added
value offered by data on static relations in an event
extraction framework, additional future work will
focus on the automatic extraction of the static re-
lations. Similar relations have been considered in
numerous recent studies, and while challenges to
reliable prediction remain, several methods with
promising performance have been proposed (Girju
et al., 2007; Hendrickx et al., 2009). By inte-
grating predictions from both static relations and
events instead of using gold standard relation an-
notations, we will be able to study the effect of
the relation information on new data, including the
shared task test set. Such experiments are key to
establishing the practical value of static relations
for biomolecular event extraction.
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