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Abstract

This paper presents an open-source toolkit
for negation detection. It identifies nega-
tion cues and their corresponding scope in
either raw or parsed text using maximum-
margin classification. The system design
draws on best practice from the existing
literature on negation detection, aiming
for a simple and portable system that still
achieves competitive performance. Pre-
trained models and experimental results
are provided for English.

1 Introduction

The task of negation detection has recently seen
quite a bit of interest in the NLP community, in
part spurred by the availability of annotated data
and evaluation software introduced by the shared
tasks at CoNLL 2010 (Farkas et al., 2010) and
*SEM 2012 (Morante and Blanco, 2012). While
many research-based systems have been devel-
oped, with the aim of exploring features and al-
gorithms to advance the state-of-the-art in terms
of performance (Morante and Daelemans, 2009;
Read et al., 2012; Lapponi et al., 2012; Packard
et al., 2014; Fancellu et al., 2016), many of them
are difficult to employ in practice, due to layered
architectures and many dependencies, and further-
more, most are simply not made publicly available
in the first place.

In this paper, we present an open-source
portable toolkit for automatic negation detection,
with experimental results reported for English.
The system is implemented in Python on top of
PyStruct (Müller and Behnke, 2014), a library for
structured prediction based on a maximum-margin
approach. The system implements two stages of
negation analysis, namely cue detection, which
detects words that signal negation, such as no, not

and unfortunate, and scope resolution, which iden-
tifies the span of the sentence that is affected by
the negation. Our negation toolkit builds on exist-
ing libraries that are actively maintained and easy
to install, and the source1 is made freely avail-
able (GPL). While we make pre-trained classifiers
available (for English), users will also be able to
train their own models.

The system design is based on best practices
from previous work, in particular systems from
the 2012 *SEM shared task. In particular, we
adopt the practice of solving scope resolution as a
sequence labeling task (Morante and Daelemans,
2009; Lapponi et al., 2012; White, 2012) based
on syntactic features (Read et al., 2012; Lapponi
et al., 2012; Packard et al., 2014). In contrast
to many of the previous systems that have used
constituency-based representations (Read et al.,
2012; Packard et al., 2014), we base our syntactic
features on dependency representations, similar to
the approach of Lapponi et al. (2012). For cue de-
tection, on the other hand, simply using surface-
oriented lexical features have been shown to be
sufficient, and we here largely build on the specific
approach described by Read et al. (2012; Velldal et
al. (2012), using a binary SVM classifier.

The main goal of this work is to arrive at a lean
and light-weight system with minimal use of extra
heuristics beyond machine learned models. While
achieving the highest performance was not our
main goal, the results are competitive with previ-
ously reported SoA results in the literature. More-
over, the system can be employed with both raw
and parsed input data.

2 Experimental set-up

The Conan Doyle corpus The data set we use
for training and testing is the Conan Doyle cor-

1https://github.com/marenger/negtool
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pus (Morante and Daelemans, 2012) as used in
the 2012 *SEM shared task (Morante and Blanco,
2012), based on a CoNLL-style format. While the
shared task also included detection of events and
focus, we only focus on cues and scopes in this
work. We use the same splits for training, devel-
opment testing and held-out evaluation as supplied
for the shared task. Examples (1)-(2) below show
two examples taken from the corpus, where nega-
tion cues are in bold and their scopes are under-
lined. In (1), the cue is the adverb not, whereas (2)
provides an example of the affixal cue un.

(1) And yet it was not quite the last.

(2) Since we have been so unfortunate as to miss him and
have no notion [. . . ]

The Conan Doyle corpus provides phrase struc-
ture trees produced by the Charniak and John-
son (2005) parser, and we have used the Stan-
ford Parser (Manning et al., 2014) to convert these
to Stanford basic dependency representations (de
Marneffe et al., 2014) prior to training.

Evaluation We use the evaluation script of the
2012 *SEM shared task (Morante and Blanco,
2012) for measuring precision, recall and F-score.
For scopes, it provides two different measures;
token-level and scope-level. For the token-level
measure the evaluation is defined similarly as for
cues, simply checking whether each token in the
scope sequence is correctly labeled. For scopes
on the other hand, a true positive requires both the
entire scope sequence and cue to be correct.

Note that for the held-out results, our system is
trained on both the development and training data
combined.

System comparison In addition to providing
baseline results for both cues and scopes, we also
include the results for the UiO2 system of Lapponi
et al. (2012) from the *SEM shared task. Achiev-
ing the best results for both cue and scope resolu-
tion in the open track, it has guided much of the
design of the current system. The cue classifica-
tion component of UiO2 was the same as for UiO1

(run 1) (Read et al., 2012) – the system that was
ranked first in the shared task overall (though not
for cue detection in isolation).

Maximum-margin learning for cues and scopes
While cue detection is here approached as a token-
wise classification problem and scope resolution
as sequence classification, they are both modeled

using a maximum-margin approach. Cue detec-
tion is solved using a binary Support Vector Ma-
chine (SVM) classifier (Vapnik, 1995). As is
fairly common, scope resolution is solved as a
sequence labeling task, applying a discriminative
linear-chain Conditional Random Fields (CRF)
model.However, in a conventional CRF, the pa-
rameters are learned through maximum likelihood
estimation. In PyStruct on the other hand, the pa-
rameters are estimated through maximum-margin
learning based on SVMs, resulting in what may be
called a maximum-margin CRF.

System requirements The input given to the
system can either be raw running text or parsed
data in the CoNLL-X format (Buchholz and
Marsi, 2006). If the user inputs raw text, we need
to tokenize, tag and parse the text before we can
classify the sentences. Because our training data
uses PTB PoS-tags and Stanford dependencies
(following conversion), we need a pipeline provid-
ing the same standard, and hence use the CoreNLP
tool (Manning et al., 2014). Beyond Python 2.7 or
newer, the negation tool has the following depen-
dencies: scikit-learn, PyStruct, NumPy, and Net-
workX (in addition to CoreNLP unless pre-parsed
input is provided).

3 Cue identification

The task of cue detection is to identify potential
cue words and determine whether they function as
negation cues in the given context. Cue detection
is here solved using a binary SVM classifier and
follows the filtering approach described by Vell-
dal (2011) and Read et al. (2012) which means that
not all words in the input text are presented to the
classifier. Instead we extract a lexicon of known
single-word cues from the training data and only
attempt to disambiguate these (any other word will
always be labeled as a non-cue). Additionally, a
separate lexicon of affixal cues is also automat-
ically extracted, consisting of affixes seen in the
training data, viz. the prefixes {dis, im, in, ir, un},
the infix less, and the suffix less. The cue classi-
fier is presented with any words that match either
of these at the respective positions, e.g. words that
have a prefix that matches any of the prefixes, e.g.
impatient and image.

In theory, this way of restricting the problem
to a closed class of candidates will put a cap on
the upper bound of recall. In practice, Velldal
(2011) found that it could still outperform full
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Development Held-out

P R F1 P R F1
Baseline 90.68 84.39 87.42 87.10 92.05 89.51
UiO2 93.75 95.38 94.56 89.17 93.56 91.31
System 91.67 95.38 93.49 90.15 93.56 91.82

Table 1: Cue classification

word-by-word classification where all words are
considered. It simplifies the problem in that much
fewer instances need to be considered, thereby
also greatly reducing the feature space, and also
gives much more balanced classes.

Multi-word cues, like ‘by no means’ or ‘nei-
ther...nor’, are handled by a few simple post-
processing rules, simply checking whether a given
cue word forms part of a multi-word cue in the
given context. Using a small stop-list, some forms
like by and means are excluded from the list of
candidate cue words considered by the classifier.

As a baseline we use a majority class classifier,
labeling each word by its most frequent label in the
training data. Table 1 shows that this simple base-
line is already quite strong: With an F1 of 89.51
on the held-out data it outperforms 4 of the 12 sys-
tems submitted for the *SEM shared task.

The feature configuration of the cue classifier is
based on a grid search towards the development set
mostly based on features previously described by
Read et al. (2012; Velldal et al. (2012), tuning the
SVM C parameter separately for each configura-
tion. The final model uses the following features
for each token to be classified: The word form,
PoS and lemma of the token, as well as lemmas
± 1 position. For candidates of affixal cues we
additionally extract the affix itself and character
n-grams up to n=5 of the base-form that the af-
fix attaches to (extracted from both the beginning
and the end of the form). In terms of PyStruct
configuration we use its BinaryClf model with the
NSlackSSVM estimator, with the C regularization
parameter set to 0.2.

The results are shown in Table 1. We see that
there is a slight drop in F1-score when moving
from the development set to the held-out set (from
93.49 to 91.82). Compared to UiO2, we see that
while the recall of the two systems are identical,
the precision of our system is almost 1 percent-
age point higher. Overall, our cue classifier would
have ranked third in the *SEM 2012 shared task.

4 Scope resolution

Our approach to scope resolution largely follows
that of the UiO2 system of Lapponi et al. (2012)
from the *SEM shared task, both in terms of
the choice of machine learning algorithm, the in-
ternal data representation and the set of features
used to represent the negation scopes. Like them,
we model scope resolution as a sequence label-
ing task, making use of both lexical and syntac-
tic information regarding the context of a negation
cue. Just as for the cue classifier, we performed
extensive tuning towards the development set for
the maximum-margin CRF scope model – exper-
imenting with different features, sequence labels,
and hyper-parameters – finally arriving at the fol-
lowing configuration:

Surface features: The word form, lemma (± 1
position), and PoS (± 1 position)

Cue features: Cue type, left/right cue distance,
and cue PoS.

Dependency features: Directed dependency dis-
tance, dependency graph path.

Note that the directed dependency path is the
shortest path from the head of the cue to the cur-
rent token. Internally, we employ the following
label set to represent scopes: I, O, B, and C (In-
side, Outside, Beginning, and Cue). Note that the
only post-processing performed after the CRF is
ensuring that the cue is always out-of-scope and
that the base of an affixal cue is always in-scope.
In terms of PyStruct configuration we use its chain
CRF model, with the FrankWolfeSSVM estima-
tor, with the C regularization parameter set to 0.1.

The results are presented in Table 2. As for the
cue results in Table 1 we here too report the per-
formance of the UiO2 system as a point of ref-
erence. In addition, we also include results for a
baseline corresponding to labeling the entire sen-
tence as in-scope if it contains a (gold) negation
cue. While this section focuses on scope predic-
tion performance in isolation using gold cues, Sec-
tion 5 discusses the end-to-end results with scope
resolution for predicted cues.

We see that the baseline scores are much
lower on the evaluation set than the development
set, with the scope-level F-score decreasing from
32.03% on development to 19.24% on the evalu-
ation set. However, our maximum-margin scope
classifier appears to be robust to this gap, and its
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Development Held-out

Scope-level Token-level Scope-level Token-level
P R F1 P R F1 P R F1 P R F1

Baseline (gold cues) 86.84 19.64 32.03 45.00 97.55 61.59 66.67 11.24 19.24 38.54 98.01 55.32
UiO2 (gold cues) 100.00 66.67 80.00 90.64 81.36 85.75 - - - - - -
System (gold cues) 100.00 63.10 77.38 90.80 82.05 86.20 98.75 63.45 77.26 91.47 81.39 86.14
UiO2 - - - - - - 85.71 62.65 72.39 86.03 81.55 83.73
System 88.14 61.90 72.73 85.24 80.56 82.83 85.00 61.45 71.33 85.49 80.28 82.80

Table 2: Scope resolution, for both gold and predicted cues.

performance remains largely unchanged across the
two test sets, with only a 0.12 percentage points
decrease in F-score for the scope-level and 0.06
on the token-level.

Turning to the development results of the scope
CRF model of UiO2 (on gold cues), we find that
the scores are slightly higher than ours with re-
spect to the scope-level, but slightly lower for the
token-level. For the held-out evaluation data on
the other hand, UiO2 scope results for gold cues
were not reported, like for most of the other *SEM
competition systems, unfortunately. However, the
system description of the UiO1 system (Read et
al., 2012) – implementing a hybrid approach com-
bining manually defined rules and SVM-based
ranking of constituent (sub-)trees – reports scope-
level scores for gold cues on both the development
and evaluation data. The same holds for the sys-
tem of Packard et al. (2014), which combines the
UiO1 system with an additional layer of manually
defined rules over Minimal Recursion Semantics
structures created by an HPSG parser. For both
of these systems we can observe a larger drop in
F1 when moving from the development data to the
evaluation data, with the UiO1/MRS-combination
dropping from 82.5 to 78.7, and with the UiO1

system2 on its own dropping from 82.52 to 77.26
(compared to the drop from 77.38 to 77.26 in the
case of our system). Regardless of the causes
for these differences, it at least appears that our
purely CRF-based system, with the tuning of the
C parameter for the underlying maximum-margin
model, does not suffer any overfitting effects. At
the same time, we see that the combined sys-
tem of Packard et al. (2014) achieves the high-
est absolute scores, and we return to this point
when discussing end-to-end results below. Fi-

2We here report results for ‘run II’ of UiO1 as submitted
for the *SEM 2012 shared task, since this version of the sys-
tem was optimized towards the development set just like in
our set-up, while ‘run I’ was optimized by cross-validation
on the training and development data combined.

nally, note that Fancellu et al. (2016) report scope
results on the *SEM evaluation data (gold cues
only) for a suite of different classifiers based on
a bi-directional LSTM, with the best configura-
tion obtaining a scope-level F-score of 77.77. In
sum, we observe two things; (i) our scope clas-
sifier achieves competetive performance, and (ii)
despite the large differences in terms of types of
approaches and architectures for the various scope
systems considered here, there are not large differ-
ences in terms of performance.

4.1 Error analysis

We performed an error analysis of our scope res-
olution predictions over the development data us-
ing gold cues. The analysis shows that our system
struggles with discontinuous scopes, as in (3):

(3) It was not, I must confess, a very alluring prospect.

This is not surprising, seeing that several of the top
performing systems implements dedicated post-
processing modules for dealing with discontinu-
ous scopes. The error analysis also reveals other
types of recurring scope errors, including sen-
tences that contains multiple negation cues with
overlapping scopes (gold-standard). Moreover, we
also observed that many of the sentences that are
counted as false negatives with respect to the strict
exact match scope-level measure often just have
a single token that is incorrectly labeled, meaning
that the overall scope is very close to being correct.
This is reflected in the fact that the token-level F-
score is roughly 10 percentage points higher than
the scope-level F-score.

5 End-to-end results

As expected, the scope scores drop when moving
from gold to predicted cues, mostly in terms of
precision, which for the scope-level on the devel-
opment set was 100% with gold cues but 88.14%
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with predicted cues. Errors from the cue classi-
fier propagates to the scope classifier which will
attempt to predict scopes for false positive cues.
Our end-to-end results would have ranked fourth
in the *SEM 2012 shared task with respect to the
relevant subtasks.

In the time passed since the shared task, the best
published results on the evaluation data appears to
be for the system of Packard et al. (2014). Build-
ing on top of the UiO1 system, it obtains a scope-
level F1 of 73.1. Depending on the goal, how-
ever, F-score in isolation is not the only relevant
dimension for system comparisons. The goal of
the current work is to create a practically usable
tool. For an applied and practical setting, it is also
relevant to consider other system properties, like
the number of dependencies, platform compatibil-
ity, the degree of manual engineering – which can
in turn affect how easy it will be to re-train the
system on new data or porting the system to cope
with other phenomena, the amount of required lin-
guistic pre-processing, and so on. In the system of
Packard et al. (2014), the underlying UiO1 system
(Read et al., 2012) is used for cue prediction and
as a second source for scope-prediction. While
UiO1 itself is already a highly engineered system
– combining manually defined heuristics and sta-
tistical ranking of constituent sub-trees – Packard
et al. (2014) add a second layer of both (HPSG)
parsing and rules (over MRS representations). In
sum, the 1.77 point increase in F1 compared to the
current system comes at the cost of substantially
increased complexity. Importantly though, the full
system pipeline is also not publicly available.3

For the BiLSTM scope classifier of Fancellu et
al. (2016) discussed in Section 4, no results are re-
ported for cue classification, and scope results are
only reported for gold cues.4 Although the code
for the BiLSTM scope model is made available,
end-to-end results can not be compared without a
cue classifier.

3The paper of Packard et al. (2014) points to code for
replicating the reported experiments, but this only includes
support for computing the final layer of ‘MRS crawling’. The
system of Packard et al. (2014) also relies on cue- and scope
predictions from the so-called UiO1 system of Read et al.
(2012), however, and these predictions are only provided in
the form of pre-computed system output for the *SEM shared
task data; the underlying UiO1 system is not itself available.

4In the system comparison reported by Fancellu et al.
(2016), the results of the *SEM shared task competition sys-
tems are based on predicted cues while the results of Packard
et al. (2014) and Fancellu et al. (2016) are for gold cues, mak-
ing them not comparable.

6 Future work

One possible improvement of the system would
be to extend the scope resolution with post-
processing heuristics for targeting discontinuous
scopes. The best overall system in the *SEM
shared task implemented this (Read et al., 2012),
and while the rules themselves require some
linguistic understanding, they would be fairly
straightforward to implement. There are also cer-
tain multi-word cues occurring in the data set that
are not covered by the heuristics currently imple-
mented in the system.

Beyond the multi-word cue heuristics, our im-
plementation is abstract in the sense that it is not
hard-coded for negation, instead relying on mod-
els to be learned automatically from any data us-
ing a CoNLL style format similar to that of the
*SEM shared task. Importantly, this means that
the tool could be trained for other similar tasks,
such as speculation detection, as long as cues and
scopes are marked. One interesting direction here
would be to convert the annotations of the Bio-
Scope corpus (Vincze et al., 2008) to the format
used by the Conan Doyle corpus. This would al-
low training of both speculation and negation de-
tection models for biomedical data, and also to test
cross-domain effects. Such a conversion is not en-
tirely trivial, however, as the resources differ not
merely in terms of format but also the underly-
ing annotation rules. Developing such a mapping
could greatly benefit this research field, also mak-
ing it possible to use data from different domains.

7 Conclusion

This paper has presented an open-source tool
for detecting negation cues and their in-sentence
scopes. Despite the substantial amount of previous
work on negation detection, this has not left much
in terms of reusable tools. The presented toolkit
mostly relies on machine-learned models, based
on a maximum-margin approach. While pre-
trained models for English are distributed along
with the code, users can also train their own mod-
els. In terms of learning frameworks and features,
the system design draws on best practice from the
existing literature on negation detection, aiming
for a simple and portable system that still achieves
competitive performance. For future work we plan
to also use the tool for training and testing models
for speculation detection.
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