
Proceedings of the EMNLP 2015 Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics, pages 44–53,
Lisboa, Portugal, 18 September 2015. c©2015 Association for Computational Linguistics.

Semantically Enriched Models for Modal Sense Classification

Mengfei Zhou1 Anette Frank1,2

1Department of Computational Linguistics, Heidelberg University, Germany
2Research Training Group AIPHES, Dept. of Computational Linguistics, Heidelberg University

{zhou,frank,palmer}@cl.uni-heidelberg.de
3Department of Computational Linguistics, Universität des Saarlandes, Germany

afried@coli.uni-saarland.de

Annemarie Friedrich3 Alexis Palmer1

Abstract

Modal verbs have different interpretations
depending on their context. Previous
approaches to modal sense classification
achieve relatively high performance using
shallow lexical and syntactic features. In
this work we uncover the difficulty of par-
ticular modal sense distinctions by elimi-
nating both distributional bias and sparsity
of existing small-scale annotated corpora
used in prior work. We build a seman-
tically enriched model for modal sense
classification by novelly applying features
that relate to lexical, proposition-level, and
discourse-level semantic factors. Besides
improved classification performance, es-
pecially for difficult sense distinctions,
closer examination of interpretable feature
sets allows us to obtain a better under-
standing of relevant semantic and contex-
tual factors in modal sense classification.

1 Introduction

Factuality recognition (de Marneffe et al., 2011)
is an important subtask in information extraction.
Beyond bare filtering aspects of veridicality recog-
nition, classification of modal senses plays an im-
portant role in text understanding, plan recogni-
tion, and the emerging field of argumentation min-
ing. Communication revolves about hypothetical,
planned, apprehended or desired states of affairs.
Such ‘extrapropositional’ meanings are often lin-
guistically marked using modal verbs, adverbs, or
attitude verbs, as in (1) for hypothetical situations.

(1) a. He must’ve hurt himself.
b. He has certainly found the place by now.
c. We anticipate that no one will leave.

Following Kratzer (1991)’s seminal work in for-
mal semantics, recent computational approaches

such as Ruppenhofer and Rehbein (2012) distin-
guish different modal ‘senses’, most prominently,
epistemic (2.a), deontic/bouletic (2.b) and circum-
stantial/dynamic (2.c) modality.

(2) a. Geez, Buddha must be so annoyed!
(epistemic – possibility)

b. We must have clear European standards.
(deontic – permission/request)

c. She can’t even read them.
(dynamic – ability)

Modal sense tagging is typically framed as a
supervised classification task, as in Ruppenhofer
and Rehbein (2012), who manually annotated the
modal verbs must, may, can, could, shall and
should in the MPQA corpus of Wiebe et al. (2005).
The obtained data set comprises 1340 instances.
Maximum entropy classifiers trained on this data
yield accuracies from 68.7 to 93.5 for the differ-
ent lexical classifier models. While these accu-
racies seem high, we note a strong distributional
bias in their data set. Due to the small data set size
(200-600 instances per modal verb) and its distri-
butional bias, classifiers trained on this corpus are
prone to overfitting and hardly beat the majority
baseline. Indeed, none of the classification models
in Ruppenhofer and Rehbein (2012) (henceforth
R&R) is able to beat the baseline with uniform set-
tings across all modal verb types.

Of particular concern in our work are specific
sense ambiguities that are difficult to discriminate,
such as dynamic vs. deontic readings of can (3.a),
epistemic vs. dynamic readings of could (3.b) or
epistemic vs. deontic readings of should (3.c).

(3) a. You can do this, if you want.
ability (dy) vs. permission (de)

b. He could have arrived in time.
possibility (ep) vs. ability (dy)

c. He should be aware of the issue.
possibility (ep) vs. obligation (de)
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In this paper we reexamine prior work on modal
sense classification and show that specific distinc-
tions are difficult for state-of-the art models. We
show that modal sense classification is a challeng-
ing problem that profits from lexical, proposition-
level and discourse-level semantic information.

Our goals and contributions are as follows:
(i) We investigate the impact of semantic and

discourse-related factors for modal sense clas-
sification, looking in particular at difficult modal
sense distinctions. Accordingly, we define a
range of semantically inspired linguistic feature
classes. The feature groups are related to lexical
and propositional semantics, as well as discourse-
level semantics, ranging from tense and aspect to
speaker/hearer orientation.

As an example, one of our hypotheses is that
aspectual event types play a decisive role in deon-
tic vs. epistemic sense disambiguation for modal
verbs such as must. Our intuition is that events are
more likely to co-occur with the deontic sense of
must (4.a,b), whereas statives are more likely to
co-occur with the epistemic sense (4.c).

(4) a. The prisoners must return their weapons.
b. Prisoners of war must be returned to their

home countries.
c. They must be so scared.

(ii) As a precondition for the aims of this work,
we construct a large corpus that is balanced for
modal sense distribution and less prone to overfit-
ting compared to prior work. To this end we apply
a paraphrase-driven cross-lingual modal sense
projection approach using parallel corpora. We
show that this automatic acquisition method yields
modal sense annotations of very high accuracy.

(iii) Using this corpus as training data, we de-
vise a novel, semantically enriched model for
modal sense classification. We assess the impact
of diverse feature groups for modal sense classifi-
cation in unbiased classification settings and ana-
lyze to what extent they contribute to solving dif-
ficult disambiguation problems.

Overview. We review related work in Section 2.
Section 3 outlines an automatic modal sense pro-
jection approach using parallel corpora. We ap-
ply this method to bilingual corpora and evalu-
ate the quality of the obtained data set. Section
4 motivates and describes semantic and discourse-
oriented features for modal sense classification.
These are examined in classification experiments

in Section 5. We reconstruct the modal sense
classifier of Ruppenhofer and Rehbein (2012) to
compare against prior work. We evaluate the per-
formance of different models in unbiased classi-
fication experiments, using the harvested sense-
labeled corpora for training. We analyze the im-
pact of different feature groups on disambiguation
performance and relate them to specific difficult
disambiguation classes. Section 6 concludes.

2 Related Work

Most relevant to our work is the state of the art
in modal sense classification in Ruppenhofer and
Rehbein (2012). They manually annotated modal
verbs in the MPQA corpus of Wiebe et al. (2005).
Their annotation scheme departs from both the
earlier setting in Baker et al. (2010) and a more re-
cent proposal in Nissim et al. (2013). Baker et al.
(2010) distinguish 8 categories. Next to require-
ment, permissive, want and ability, they include
success, effort, intention and belief. They mea-
sured precision in automatic tagging of 86.3% by
examining 249 modality-tagged sentences. Nis-
sim et al. (2013) propose a fine-grained hierarchi-
cal modality annotation scheme that can be ap-
plied cross-linguistically. It includes (subtypes)
of factuality, as well as speaker attitude. To our
knowledge their annotation scheme has not been
used for computational tagging.

Ruppenhofer and Rehbein (2012) apply the
well-established modal sense categories of Kratzer
(1991): epistemic, deontic/bouletic and circum-
stantial/dynamic modality. They add the cat-
egories: concessive, conditional and optative.
Their annotation scheme proves reliable both
in inter-annotator agreement, which ranges from
K=0.6 to 0.84 for the different modal verbs, and
classification performance, which yields accura-
cies between 68.7 and 93.5, depending on the verb.
However, the sense distributions of their data set
are heavily biased (cf. Table 2, Section 5), and
as a consequence, the majority sense baselines are
hard to beat. The classification model of Ruppen-
hofer and Rehbein (2012) employs a mixture of
target and contextual features, taking into account
surface, lemma and PoS information, as well as
syntactic labels and path features linking targets
to their surrounding words and constituents. These
features are able to capture very diverse contextual
factors, but it is difficult to interpret their impact
for distinguishing modal senses.
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3 Paraphrase-driven Sense Projection

Given the sparsity and distributional bias in ex-
isting modal sense annotated corpora such as the
MPQA, we propose a method for cross-lingual
sense projection to alleviate the manual annotation
bottleneck. Our approach exploits the paraphras-
ing behaviour of modal senses, which holds across
modal verbs, modal adverbs and certain attitude
verbs. As illustrated in (5) and (6), this paraphras-
ing behaviour is applicable across languages.

(5) a. He may be home by now. (possibility)
b. You may enter this building. (permission)
c. May you live 100 years. (wish)

(6) a. Vielleicht ist er schon zu Hause.
MAYBE IS HE ALREADY AT HOME.

b. Es ist gestattet, das Gebäude zu betreten.
IT IS PERMITTED THE BUILDING TO ENTER

c. Hoffentlich werden Sie 100 Jahre.
HOPEFULLY BECOME YOU 100 YEARS

Capitalizing on the paraphrasing capacity of
such expressions, we apply a semi-supervised
cross-lingual projection approach, similar to prior
work in annotation projection (Yarowsky and
Ngai, 2001; Diab and Resnik, 2002):

(i) we select a seed set of cross-lingual sense in-
dicating paraphrases,

(ii) we extract modal verbs in context that are in
direct alignment with one of the seed expres-
sions in word-aligned parallel corpora, and

(iii) we project the label of the sense-indicating
paraphrase to the aligned modal verb.

Experimental setup and annotation scheme.
German is our source language, and we project
into English. We adopt R&R’s annotation scheme,
which is grounded in Kratzer’s modal senses epis-
temic, deontic and dynamic. While R&R add the
novel categories conditional, concessive and opta-
tive,1 we subsume the former two as cases of epis-
temic and optative as a subtype of deontic.

Seed selection. The seeds were manually se-
lected from PPDB (Ganitkevitch et al., 2013) and
parallel corpora from OPUS (Tiedemann, 2012).
The major criterion, besides frequency of occur-
rence, was non-ambiguity regarding the modal

1Examples: “Should anyone call, please take a message”
(conditional), “But, fool though he may be, he is powerful”
(concessive), and “Long may she live!” (optative). (R&R)

sense. We chose 30 seed phrases. Examples
are adverbs like wahrscheinlich (probably – epis-
temic), hoffentlich (hopefully – deontic), adjec-
tives like erforderlich (necessary – deontic), verbs
like gelingen (succeed – dynamic), erlauben (ad-
mit – deontic) or affixes such as -bar (-able) as
in (lesbar (readable) – dynamic). For projection
we employed the word-aligned Europarl (Koehn,
2005) and OpenSubtitles parallel corpora.

Projection and validation. We extracted
11,610 instances with direct alignment of modal
sense paraphrase and modal verb. 80.6% were
labeled epistemic, 8.2% deontic, 11.2% dynamic.

In order to assess the quality of the heuristically
sense-labeled modal verbs we performed manual
annotation on a balanced subset of the acquired
data consisting of 420 sentences. We established
annotation guidelines that ask the annotators to
consider four paraphrasing possibilities for modal
verbs: possibility (epistemic), request (deontic),
permission (deontic)2 and ability (dynamic). We
performed annotation by two linguistically trained
experts. They also annotated a balanced subset of
103 instances from R&R’s MPQA data set, in or-
der to calibrate our annotation quality against the
MPQA gold standard.

On the automatically acquired data (from Eu-
roparl and Open Subtitles) we obtain high anno-
tator agreement at K=0.87.3 Evaluating projected
sense labels against ground truth, we observe high
accuracy of .92. Agreement for MPQA is lower.
There we achieve moderate agreement: K of 0.66
and 0.77 against the gold standard and 0.78 be-
tween annotators. In R&R, agreement averaged
over the different modal verbs was 0.67. Our an-
notation reliability is largely comparable.

4 Semantic Features for Modal Sense
Classification

In our work we expand the feature inventory used
for modal sense classification to incorporate se-
mantic factors at various levels. An overview of
our semantic features is given in Table 1. We de-
fine specific feature groups for focused experimen-
tal investigation in Section 5. Feature extraction
is performed using Stanford’s CoreNLP (Manning
et al., 2014) and Stanford parser (Klein and Man-
ning, 2002) to obtain syntactic dependencies.

2We split permission and request to make the task more
accessible and merged them to deontic later.

3Cohen’s Kappa, Cohen (1960)
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VB: Lexical features of the embedded verb.
The embedded verb in the scope of the modal
plays an important role in determining modal
sense. For instance, with the embedded verb fly in
(7.a), we prefer a dynamic reading of can, whereas
with eat in (7.b) we find a deontic reading.

(7) a. The children can fly (if they just believe,
says Peter Pan)!

b. The children can eat (ice cream) now.

We extract the lemma of the embedded verb and
its part-of-speech tag in the sentence. We also
extract whether the verb has a particle (e.g. the
plane could take off ), and if yes, which.

SBJ: Subject-related features. These features
capture syntactic and semantic properties of the
subject of the modal construction. In (8) a non-
animate, abstract subject favors an epistemic read-
ing for could, whereas with an animate subject,
a dynamic reading is preferred. Other factors in-
volve speaker/hearer/third party distinctions (9).

(8) (The conflict | He) could now move
to a next stage. (ep | dy)

(9) a. I must be home by noon. (deontic only)
b. He must be home by noon. (de or ep)

We extract person and number of the subject
and the noun type (common, proper, pronoun).
Person is identified via personal pronoun features,
and the other features are extracted from POS tags.
The countability of the noun is obtained from
the Celex database (Baayen et al., 1996).

Lexical semantic features for the subject NP
are extracted from WordNet (Fellbaum, 1999).
Following Reiter and Frank (2010), we take
the most frequent sense of the noun in WN
(subject sense0), add the direct hypernym of
this sense, the direct hypernym of that hypernym,
etc., resulting in features subject sense[1-3].
We also extract the top sense in the WN hierar-
chy subject sense top (e.g. entity) and the WN
lexical filename (e.g. person).

TVA: Tense/voice/grammatical aspect features.
These features capture tense and grammatical as-
pect of the embedded verb complex. LA below
notes how grammatical aspect influences modal
sense. At the same time, tense is an important fac-
tor for modal sense disambiguation. (10) clearly
favors an epistemic reading, as the event is located

Embedded verb

VB lemma lemma of head
part-of-speech POS of head
particle up, off, on,...

TVA tense present / past
progressive true / false
perfect true / false
voice active / passive

LA lexical aspect dynamic / stative

NEG negation true / false

WNV WN sense [0−2] WN senses (head+hypernyms)
WN senseTop top sense in hypernym hierarchy

Subject noun phrase

SBJ number sg, pl
person 1, 2, 3
countability from Celex, e.g. count
noun type common, proper, pronoun
WN sense [0−2] WN senses (head+hypernyms)
WN senseTop top sense in hypernym hierarchy
WN lex. fn. person, artifact, event, ...

Sentence structure

S conjunct clause true / false
adjunct clause true / false
relative clause true / false
temporal mod. true / false

Table 1: Individual features and feature groups.

in the past, whereas deontic sense is favored with
future events in indicative mood as in (4.a).

We restrict the tense feature to the values
{past, present}, determined via patterns of
POS tags. We capture grammatical aspect fea-
tures using sequences of POS tags of the verbal
complex, following Loaiciga et al. (2014). The
boolean features perfect and progressive indi-
cate the respective grammatical aspect; voice in-
dicates active or passive voice.

LA: Lexical aspectual class. Verbs can be used
in a dynamic or stative sense, e.g. I ate an apple
vs. I like apples (Vendler, 1957). The lexical as-
pect of a verb in context influences modal sense
in some cases. In contrast to (4.a), for example,
where the eventive verb return triggers the deontic
sense, perfect aspect in (10) coerces the clause to
stative, triggering the epistemic sense of must.

(10) The prisoners must have returned their
weapons.

We label the lexical aspectual class of the
embedded verb following Friedrich and Palmer
(2014), who make use of both syntactic-
semantic contextual features and linguistic indica-
tors (Siegel and McKeown, 2000), which are pat-
terns of usage for verb types estimated over a large
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parsed but otherwise unlabeled corpus. Accuracy
for this prediction task is reported as around 84%.

NEG: Negation. Negation is a semantic feature
at the proposition level that can have reflections in
modal sense selection. Should, e.g., seems to favor
a deontic meaning when negated in (11.a). Also,
negation can interact with disambiguation of epis-
temic vs. deontic readings depending on proposi-
tional or discourse context. In (11.b), the favored
reading is deontic in the negative sentence.

(11) a. He should (not) have returned.
(ep/de (pos) vs. de (neg))

b. He may (not) drink more gin tonight.
(ep/de (pos) vs. de (neg))

The negation feature captures the presence or
absence of negation in the modal construction. We
use the dependency label NEG to identify negation.

WNV: Lexical semantic features of the embed-
ded verb. This feature group encourages seman-
tic generalization for lexical features of the em-
bedded verb. It can play a role in interaction
with other features, such as lexical and grammat-
ical aspect and proposition-level features such as
negation or the combined lexical semantic fea-
tures described below (WN). The features in this
group are parallel to the WordNet features de-
scribed for the SBJ feature group above (minus
lexical filename), but apply to the embedded
verb instead of the subject NP.

S: Features of sentence structure. When
modals appear as part of a complex sentence,
certain structural configurations can reflect the-
matic or temporal relations between the proposi-
tion modified by the modal and dependent clauses.
An example are telic clauses that can favor a de-
ontic over a dynamic or epistemic reading (12).

(12) You could use a shortcut to save time.

We extract features from the constituent
tree to capture such effects: whether the
modal clause is conjoined to the main clause
(embedded ConjunctSentence), whether it em-
beds adjunct clauses (and if so, the conjunction)
(adjunctSentence), and whether it is in a relative
clause (relativeSentence). Finally, has tmod

indicates the presence of a temporal modifier.

WN: All WordNet features. This feature group
aims to capture aspects of proposition-level se-
mantics by combining semantic features of the
subject NP with those of the embedded verb. This
feature group simply includes both the WordNet
features described in SBJ and those in WNV.

The intuition is that certain subject-predicate
combinations may have a preference for certain
modal senses. In (13), for example, can appears
with a proposition that is subject to specific pre-
scriptions or “laws”: soldiers are subject to restric-
tions with respect to consuming alcohol.

(13) a. Soldiers can drink when off duty.

TVA/LA: Features of the verb complex. Fi-
nally, this feature group uses both lexical aspect
(LA) and tense, voice, and grammatical aspect
(TVA) features. The goal is to investigate whether
these two views of the verb complex are more ef-
fective separately or in combination.

5 Experiments & Results

Our experiments have several objectives:
(i.) We aim to show that modal sense clas-

sification, especially difficult sense distinctions,
can profit from semantic and discourse-oriented
features. To this end we construct contrast-
ing classifier models with different feature sets:
R&R’s shallow lexical and syntactic path features
(FR&R), a feature set consisting of only our newly
designed semantic features (FSem), and a com-
bined set Fall consisting of both FR&R and FSem.

However, any classifier trained only on the
highly unbalanced MPQA data set will have dif-
ficulty separating the effect of distributional bias
in the training data from the predictive force of its
feature set. A classifier that follows the majority
class in the training data will neutralize the poten-
tial impact of its feature set. In order to counter-
balance the distributional bias and also the sparsity
inherent in the data, we evaluate the different clas-
sifier models in different classification settings:

(ii.) We extend the training set using heuris-
tically labeled instances obtained from modal
sense projection (cf. Section 3), thereby eliminat-
ing sparsity and reducing distributional bias.

(iii.) We further evaluate classifiers trained on
perfectly balanced data. This eliminates the dis-
tributional bias in training and will allow us to
carve out the impact of the different feature sets.
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(iv.) Finally we measure the impact of individ-
ual feature groups via ablation (Section 5.3).

A note on notation: Subscripts on classifier
names indicate the source of the training data.
CLM denotes a classifier trained only on MPQA
data; CLMH combines MPQA and heuristically-
tagged data; CLH is a classifier trained only on
heuristically-tagged data. Superscripted +b or −b
indicates a balanced vs. unbalanced training set.

5.1 Experimental settings

Replicating R&R’s modal sense classifier. We
replicate R&R’s classifier by reimplementing their
feature set,4 a mixture of target and contextual fea-
tures that take into account surface, lemma and
PoS information, as well as syntactic labels and
path features linking targets to surrounding words
and constituents (cf. R&R, Table 5).

We train one classifier per modal verb, us-
ing R&R’s best feature setting (context fea-
ture window=3 tokens left and right of target,
target-specific features). Averaged accuracies for
the replicated classifiers appear in Table 4 as
CL−b

M (feature set FR&R). Our scores are very sim-
ilar to their published results, which appear in the
same table in the column headed “R&R”.5

Extending and balancing training data sets.
From the 11,610 heuristically sense tagged in-
stances (Section 3), we construct balanced (+b)
training corpora for each modal verb. The compo-
sition of this data is shown in Table 2. To alleviate
training data sparsity, we add this data to the (un-
balanced) MPQA data; this configuration results
in CL−b

MH . Finally, we re-balance both CLM and
CLMH by under- and oversampling.6

Classification setup and test data. Training on
balanced data reduces distributional bias, but eval-
uating performance on an unbalanced, naturally-
distributed data set gives us a more realistic pic-
ture. To this end, and in order to compare to
prior work, our test data is drawn exclusively from
MPQA. For CL+b

H , we evaluate on R&R’s full data
set; the composition of the test set appears in the

4Following R&R we use the Stanford parser for process-
ing and induce maximum entropy models using OpenNLP
with default parameter settings.

5R&R performed 10-fold cross-validation (CV) for eval-
uation. We perform 5-fold cross-validation instead.

6When doing oversampling, we generally perform a mix-
ture of over- and undersampling, targeting about half the size
of the larger class. The data sets are available at http:
//projects.cl.uni-heidelberg.de/modals.

CL+b
H train Full MPQA test

ep de dy ep de dy

must 800 800 0 11 183 0
may 950 950 0 130 9 0
can 150 150 150 2 115 271
could 40 40 40 156 17 67
should 150 150 0 26 248 0
shall 0 5 5 0 11 2

Table 2: Heuristic (+b) training data and MPQA
(-b) training and test data

right-hand side of Table 2. The other two models
(CLM and CLMH ) are evaluated in a 5-fold CV
setting, with testing on the naturally distributed
MPQA instances. For each CV setting, only the
training section is adapted, by addition of heuris-
tic data, and/or balancing. Table 3 exemplifies one
run of our cross-validation setting. First, we split
MPQA into 80% train (CL−b

M ) and 20% test, then
we add the heuristically-tagged data (CL−b

MH ) and
re-balance (to produce CL+b

M and CL+b
MH ).

Baselines. For unbalanced classifiers, we com-
pare to the MFS baseline (BLMaj M ), taking the
most frequent sense for each modal verb from the
MPQA training data. For balanced classifiers, we
compare to the random baseline (BLRan), deter-
mined by the (evenly distributed) number of class
labels seen in training for each modal verb.

5.2 Comparative performance evaluation
Table 4 compares accuracy of classifiers trained
on ±balanced data, from different sources, and
with different feature sets. We report results for
individual classifiers (per modal verb) and macro-
and micro-average across all verbs. The two bold-
faced numbers per table row indicate the best mod-
els for unbalanced and for balanced data. For the
balanced classifiers, where we find more interest-
ing differences, we test significance using McNe-
mar’s test (p<0.05) (McNemar, 1947). Within a
row (for +b classifiers and micro-averages), a su-
perscript on a number indicates which classifier is
significantly outperformed by the result. Across
feature sets, we compare micro-averages and mark
significance by subscripts (R=FR&R, S=FSem).

We first discuss the classifiers trained on un-
balanced data. With FR&R, CL−b

M yields perfor-
mance comparable to R&R’s results, at 84.44%
accuracy, 1.02pp below the majority baseline. In-
dividual lexical classifiers also approach R&R’s
performance, though never beating the baseline.7

7We report individual results, while R&R aggregated
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CL−b
M train CL−b

MH train CL+b
M train CL+b

MH train MPQA test
ep de dy ep de dy ep de dy ep de dy ep de dy

must 6 149 0 806 949 0 70 70 0 870 870 0 5 34 0
may 105 6 0 1055 956 0 50 50 0 999 1000 0 25 3 0
can 1 98 212 151 248 362 100 100 100 250 250 250 1 17 60
could 120 15 57 160 55 97 54 54 54 94 94 94 36 2 10
should 21 196 0 171 355 0 100 100 0 250 250 0 5 52 0
shall 0 9 1 0 14 6 0 10 10 0 15 15 0 2 1

Table 3: Cross-validation, one run: representative class distributions of training and test data.

FR&R R&R CL−b
M BLMaj M CL−b

MH CL+b
M CL+b

MH CL+b
H BLRan

must 93.50 94.32 94.32 82.00 76.25 73.24 71.65 50.00
may 81.43 93.57 93.57 90.71 79.29 88.57M 90.71M 50.00
might 100.00 100.00 100.00 100.00 100.00 100.00 100.00
can 68.70 66.56 69.92 64.25 49.86 53.19 57.84 33.33
could 62.50 65.00 59.17 41.25 44.17 49.17 33.33
should 91.29 90.77 90.81 90.77 80.21 85.83H 76.33 50.00
shall 83.33 84.61 90.00 70.00 90.00 53.85 50.00

macro-avg. 83.73 84.44 85.46 82.41 70.98 76.43 71.36 52.38

micro-avg. 78.71MH 80.22M,MH75.22 62.59 66.24M 66.08M 41.54

FSem R&R CL−b
M BLMaj M CL−b

MH CL+b
M CL+b

MH CL+b
H BLRan

must 93.50 93.28 94.32 88.11 85.48 87.07 86.08 50.00
may 81.43 92.86 93.57 87.14 83.57 87.14 84.29 50.00
might 100.00 100.00 100.00 100.00 100.00 100.00 100.00
can 68.70 65.03 69.92 61.43 58.38 58.61 55.78 33.33
could 72.08 65.00 69.17 59.17 57.50 50.00 33.33
should 91.29 89.71 90.81 90.79 82.68 81.97 79.15 50.00
shall 83.33 84.61 66.67 76.67 66.67 46.15 50.00

macro-avg. 83.73 85.18 85.46 80.47 77.99 76.99 71.64 52.38

micro-avg. 79.59MH 80.22MH 76.57 71.17H
R 71.32H

R 67.67 41.54

FAll R&R CL−b
M BLMaj M CL−b

MH CL+b
M CL+b

MH CL+b
H BLRan

must 93.50 94.32 94.32 92.27 86.02 90.72 88.66 50.00
may 81.43 93.57 93.57 92.14 87.86 92.14 92.14 50.00
might 100.00 100.00 100.00 100.00 100.00 100.00 100.00
can 68.70 65.28 69.92 65.27 54.50 58.60 63.50 33.33
could 66.67 65.00 65.42 63.33 59.58 54.17 33.33
should 91.29 90.77 90.81 90.77 84.09 90.79M,H 84.09 50.00
shall 83.33 84.61 90.00 83.33 90.00 53.85 50.00

macro-avg. 83.73 84.85 85.46 85.12 79.88 83.12 76.63 52.38

micro-avg. 79.11 80.22MH 78.47R 71.73R 75.06M
R,S 73.31R,S 41.54

Table 4: Classifier accuracy for various training data and feature sets. See text for details.

Changing from FR&R to FSem and FAll, classi-
fier CL−b

M for could is now able to beat the base-
line. The effect is stronger for FSem, which re-
flects the impact of the semantic features. Interest-
ingly, accuracy of FSem is comparable to FR&R,
even though the classifiers learn only on the ba-
sis of semantic features. Combining the two fea-
ture sets (FAll) produces minimal differences for
CL−b

M , but yields stronger gains for CL−b
MH .

may/might and shall/should.

The addition of heuristically-tagged data in
CL−b

MH helps for some verbs, but hurts for others.
Despite the larger training set size, individual clas-
sifier performances tend to drop, meaning they do
not profit much from the reduced training bias.

For classifiers trained on balanced data, the
picture changes. Accuracies on balanced data are
lower, reflecting the lack of distributional bias. But
all results are well above the random BL.8

8All comparisons to the random baseline are significant
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Compared to CL+b
M and CL+b

H , we observe the
best results for CL+b

MH , which mixes MPQA and
out-of-domain data. Here, the best performance is
obtained with FAll. In fact, CL+b

MH with 83.12%
on balanced mixed data closely approaches the
performance of the classifiers trained on biased
training data and their majority baseline, with
about 2pp difference, and being almost identical
to R&R’s published results.

Looking at individual modal classifiers, we
see even more interesting results. can and could,
both with 3-fold sense distinctions and lowest per-
formance overall, suffer the greatest loss in the
balanced setting, in ranges of 41-57% for FR&R.
These verbs are hard to classify, and here we see
a marked performance rise as the training data
changes (from CL+b

M to CL+b
H ), though these dif-

ferences are not significant. Comparing FSem to
FR&R , we obtain better results overall, always
above 50% accuracy. With FAll we reach a range
of 54-63%, achieving strong gains of more than
+20pp for could, and about +5pp for can. We also
note an almost continous rise for should with a fi-
nal +5pp gain over FR&R. Across different fea-
ture sets, CL+b

MH performs best, that is, combining
MPQA and out-of-domain data is effective.

To summarize, with increasingly refined mod-
els and a tendency of CLMH and CLH outper-
forming CLM , we obtain a coherent picture: se-
mantic features contribute important information
and reach their best performance with a mixture
of training sets. We also note that FSem and
FAll jointly yield significant gains over FR&R for
could, must, should, can and may.9

5.3 Impact of feature groups

A confusion analysis of the predictions made by
CL+b

H using FR&R yields some insight into the
most difficult sense distinctions for specific modal
verbs. Table 5 highlights the most prominent mis-
classification classes: for instance, deontic can is
misclassified as dynamic in 106 cases; epistemic
could is misclassified as dynamic in 53 cases, etc.

For a deeper analysis of the impact of our se-
mantic features, particularly on specific sense dis-
tinctions, we conducted a quantitative and qual-
itative evaluation by ablating individual feature
groups (FGs) from the full feature sets FSem and

except: CL+b
M and CL+b

MH with FSem for should, and any-
thing involving shall.

9Cross-feature set significance for individual verbs is not
marked in Table 4.

can ep de dy could ep de dy

ep 1 0 1 ep 92 11 53
de 8 1 106 de 6 2 9
dy 28 21 223 dy 30 6 31

must ep de should ep de

ep 5 6 ep 4 22
de 43 140 de 48 209

Table 5: Confusion analysis: CL+b
H using FR&R

FAll, for all balanced classifiers.
It turns out that precisely for the modal verbs

that exhibit prominent confusion classes in Table
5 we observe a significant performance drop when
omitting individual feature groups (FGs): Table 6
reports all configurations where omitting a partic-
ular FG yielded a significant accuracy loss. In the
following we analyze these cases in more detail.

Analysis. Gains (or rescues) due to FGx are
cases in which including FGx turns a wrong clas-
sification into a correct one, compared to a model
that ablates FGx. Losses record the opposite: a
correct classification made without FGx becomes
incorrect when FGx is active.

Overall, for both models FSem and FAll we ob-
serve more gains than losses due to the FGs SBJ,
NEG, TVA(/LA) and WN: 140 vs. 41 (29% losses)
for FSem and 195 vs. 42 (22% losses) for FAll. For
must there are only gains and no losses at all.

We observe different performance for correc-
tion of misclassifications for the different modal
verbs, and we see clearly distinct contribution of
FGs for the individual modal verb classifiers.

The most clear-cut positive effects are obtained
for must, with the highest number of gains (62/81
for FSem/FAll) and no losses. Here, exclusively
the FGs TVA and TVA/LA are effective, leading to
a majority of rescues of deontic readings that oth-
erwise would be misclassified as epistemic. 5 res-
cues in the other direction occur, only with FSem.

Rescues for must through FG TVA/LA all meet
the assumption that dynamic event readings of the
verb go along with deontic sense (14.a), while sta-
tive readings (14.b) go along with epistemic sense.

(14) a. “Everything must be done by everyone to
bring about de-escalation” [..]

b. And as all must now know [..] Mugabe
has no chance of winning any ballot [..]

A particularly strong effect is seen for TVA,
which avoids misclassification of up to 12% of all
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instances of must as epistemic. All cases follow
the pattern in (15.a): the verb is not in past tense,
and we prefer a deontic interpretation, whereas
past tense in (15.b) indicates epistemic usage.

(15) a. [..] whoever is on the other side is the
evil that must be destroyed [..]

b. The event must have rocked the halls of
power [..]

should displays similar sense ambiguities and
confusion patterns, but here the picture is less
clear: as with must we obtain rescues of deontic
readings, but here the WN features are most effec-
tive, jointly with SBJ. In contrast to must, we ob-
serve a mixture of gains (30/13) and losses (11/7)
due mostly to over-correction. While for the other
modal verbs, the gains/losses ratio is best for the
FAll model, should performs best with FSem.

For could, with a 3-way ambiguity, a different
feature set is active: SBJ and NEG. Most res-
cues to epistemic are due to including SBJ fea-
tures, and a strong effect is also seen for NEG. For
both FGs we also observe gains of dynamic read-
ings from epistemic misclassifications, while this
effect is stronger for NEG, also in avoiding over-
correction. On the losses side, we observe 32% of
losses as opposed to gains for FAll.

SBJ features apparently capture a preference for
inanimate, abstract subjects for epistemic as op-
posed to deontic (or dynamic) readings, as with
the message or propositional anaphora in (16.a,b).
The same pattern is observed with should (16.c).

(16) a. “the message could not be clearer.”
b. [..] officials said this could prompt in-

dustries to change behavior . . . .
c. [..] if that should prove necessary, De

Winne will [..] pilot the space ship.

For NEG we see a clear effect that could, if
negated, is correctly analyzed as dynamic, while
non-negated instances are classified as epistemic.

(17) a. Baghdad insisted [..] it could not be a
threat to the United States.

b. Two basic principles could still, perhaps,
make it possible.

Finally, can is our most difficult case. We ob-
tain moderate gains (15) by rescues of dynamic
readings from epistemic/deontic, through the SBJ
feature. As we see no gains with FSem , this means
we are still lacking precise features that can differ-
entiate epistemic and dynamic readings.

verb FG comp. impact
to CL+b

M CL+b
MH CL+b

H

can SBJ FAll 2.83∗

could SBJ FSem 12.50∗∗

FAll 6.25∗ 11.25∗∗

NEG FSem 4.58∗

FAll 6.25∗∗

must TVA FSem 5.69∗∗ 9.79∗∗

FAll 10.32∗∗ 11.86∗∗

TVA FSem 6.21∗∗ 10.31∗∗

/LA FAll 3.09∗ 10.32∗∗

12.37∗∗

should SBJ FSem 10.60∗∗

FAll 5.64∗∗

WN FSem 6.01∗
∗∗: p=0.01; ∗: p=0.05

Table 6: Accuracy loss by FG omission. 3rd col-
umn specifies from which feature set we ablate.

6 Conclusion

We show that difficult problems in modal sense
disambiguation can be addressed with seman-
tically enriched classification models that draw
upon lexical, propositional and discourse-level se-
mantic information. Our model obtains significant
improvements, especially for difficult sense dis-
tinctions, in balanced training setups. This will
prove advantageous when applying the classifiers
to documents with sense distributions that differ
from training. We further presented a method for
automatic induction of training corpora that helps
to alleviate sparsity and can be used to tailor train-
ing data to specific genres and domains.

The insights we gain from analyzing the im-
pact of feature groups indicate avenues for future
work: The sensitivity of modal senses to seman-
tic properties of the subject calls for integration
of antecedent information with pronominal sub-
jects. The dependence on temporal information
calls for temporal resolution. Our current model
offers only a simple approximation of proposi-
tional semantics. We expect further improvements
with a more effective representation of proposi-
tional content and addition of more training data.
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of the state of Baden-Württemberg. The third author is sup-

ported in part by the MMCI Cluster of Excellence. We thank

the anonymous reviewers for helpful comments.

52



References

Baayen, H. R., Piepenbrock, R., and Gulikers, L.
(1996). CELEX2. Philadelphia: Linguistic
Data Consortium.

Baker, K., Bloodgood, M., Dorr, B. J., Filardo,
N. W., Levin, L., and Piatko, C. (2010). A
Modality Lexicon and its use in Automatic Tag-
ging. In Proceedings of LREC, pages 1402–
1407.

Cohen, J. (1960). A coefficient for agreement for
nominal scales. Education and Psychological
Measurement, (20):37–46.

de Marneffe, M.-C., Manning, C. D., and Potts, C.
(2011). Veridicality and Utterance Understand-
ing. 2011 IEEE Fifth International Conference
on Semantic Computing, pages 430–437.

Diab, M. and Resnik, P. (2002). An unsupervised
method for word sense tagging using parallel
corpora. In Proceedings of ACL 2002, pages
255–262, Philadelphia, Pennsylvania, USA.

Fellbaum, C. (1999). WordNet. Wiley Online Li-
brary.

Friedrich, A. and Palmer, A. (2014). Automatic
prediction of aspectual class of verbs in context.
In Proceedings of the ACL 2014.

Ganitkevitch, J., Van Durme, B., and Callison-
Burch, C. (2013). PPDB: The Paraphrase
Database. In Proceedings of the ACL-HLT
2013, pages 758–764, Atlanta, Georgia.

Klein, D. and Manning, C. D. (2002). Fast ex-
act inference with a factored model for natural
language parsing. In Advances in neural infor-
mation processing systems, pages 3–10.

Koehn, P. (2005). Europarl: A parallel corpus for
statistical machine translation. In Proceedings
of Machine Translation Summit X, pages 79–86.

Kratzer, A. (1991). Modality. In von Stechow,
A. and Wunderlic, D., editors, Semantics: An
International Handbook of Contemporary Re-
search, pages 639–650. Berlin: de Gruyter.

Loaiciga, S., Meyer, T., and Popescu-Belis, A.
(2014). English-French Verb Phrase Alignment
in Europarl. In Proceedings of LREC 2014.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel,
J., Bethard, S. J., and McClosky, D. (2014). The
Stanford CoreNLP natural language processing
toolkit. In Proceedings of ACL 2014: System
Demonstrations, pages 55–60.

McNemar, Q. (1947). Note on the sampling error
of the difference between correlated proportions
or percentages. Psychometrika.

Nissim, M., Pietrandrea, P., Sanso, A., and
Mauri, C. (2013). Cross-linguistic annotation of
modality: a data-driven hierarchical model. In
Proceedings of the 9th Joint ISO - ACL SIGSEM
Workshop on Interoperable Semantic Annota-
tion, pages 7–14, Potsdam, Germany.

Reiter, N. and Frank, A. (2010). Identifying
Generic Noun Phrases. In Proceedings of the
ACL 2010, pages 40–49, Uppsala, Sweden.

Ruppenhofer, J. and Rehbein, I. (2012). Yes we
can !? Annotating the senses of English modal
verbs. In Proceedings of the LREC 2012, pages
1538–1545.

Siegel, E. V. and McKeown, K. R. (2000). Learn-
ing methods to combine linguistic indicators:
Improving aspectual classification and reveal-
ing linguistic insights. Computational Linguis-
tics, 26(4):595–628.

Tiedemann, J. (2012). Parallel Data, Tools and
Interfaces in OPUS. In Calzolari, N., Choukri,
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