
Proceedings of NAACL-HLT Fourth Workshop on Computational Linguistics for Literature, pages 12–22,
Denver, Colorado, June 4, 2015. c©2015 Association for Computational Linguistics

RhymeDesign: A Tool for Analyzing Sonic Devices in Poetry

Nina McCurdy, Vivek Srikumar, Miriah Meyer
School of Computing

University of Utah
{nina, svivek, miriah}@cs.utah.edu

Abstract

The analysis of sound and sonic devices in po-
etry is the focus of much poetic scholarship,
and poetry scholars are becoming increasingly
interested in the role that computation might
play in their research. Since the nature of
such sonic analysis is unique, the associated
tasks are not supported by standard text anal-
ysis techniques. We introduce a formalism for
analyzing sonic devices in poetry. In addition,
we present RhymeDesign, an open-source im-
plementation of our formalism, through which
poets and poetry scholars can explore their in-
dividual notion of rhyme.

1 Introduction

While the digital humanities have experienced
tremendous growth over the last decade (Gold,
2012), the true value of computation to poets and
poetry scholars is still very much in question. The
reasons for this are complex and multifaceted. We
believe that common techniques for reasoning about
text, such as topic modeling and analysis of word
frequencies, are not directly applicable to poetry,
partly due to the unique nature of poetry analysis.

For example, sound is a great source of experi-
mentation and creativity in writing and reading po-
etry. A poet may exploit a homograph to encode am-
biguous meaning, or play with words that look like
they should rhyme, but don’t, in order to intention-
ally trip up or excite the reader. Discovering these
sonic features is an integral part of a close reading,
which is the deep and sustained analysis of a poem.
While existing tools allow querying for sounds or
text, close reading requires analyzing both the lexi-
cal and acoustic properties.

To investigate the influence that technology can
have on the close reading of a poem we collaborated
with several poetry scholars over the course of two

years. This investigation focused on the computa-
tional analysis of complex sonic devices, the liter-
ary devices involving sound that are used to con-
vey meaning or to influence the close reading expe-
rience. Our poetry collaborators identified a broad
range of interesting sonic devices, many of which
can be characterized as a type of traditional rhyme.
To fully capture the range of sonic devices our col-
laborators described, we adopted a broader defini-
tion of rhyme. We found that this broader defini-
tion was not only able to capture known instances of
sonic devices, but it also uncovered previously un-
known instances in poems, providing rich, novel in-
sights for our poetry collaborators.

In this paper, we present two contributions from
our work on analyzing sound in poetry. The first
is a formalism for analyzing a broad range of sonic
devices in poetry. As part of the formalism we iden-
tify a language, built on top of regular expressions,
for specifying these devices. This language is both
highly expressive and designed for use by poets.
The second contribution is an open-source imple-
mentation of this formalism, called RhymeDesign.
RhymeDesign provides both a platform to test and
extend the formalism, and a tool through which po-
ets and poetry scholars can explore a broad range of
complex sonic devices within a poem.

2 Background

Poetry may be written as formal or free verse:
formal verse follows conventional patterns of end
rhyme, meter, or some combination thereof, while
free verse allows poets more flexibility to experi-
ment with structural features, including variable line
and stanza lengths. In poetry analysis, rhyming
structure generally focuses on end rhymes, repre-
sented as AA BB CC, ABAB CDCD, and so on.
Metrical poetry may or may not also incorporate
rhyme; blank verse, for example, refers to unrhymed

12

iambic pentameter. In contrast to such established
structures, the more open form of free verse places
greater emphasis on sounds and rhythms of speech.

Whether working with sonnets or experimen-
tal avant-garde, our poetry collaborators consider
a broad and expansive definition of rhyme. To
them, the term rhyme encompasses all sound pat-
terns and sound-related patterns. We classify these
sonic patterns, which we define as instances of sonic
devices, into four distinct types of rhyme: sonic
rhyme involves the pronunciations of words; pho-
netic rhyme associates the articulatory properties
of speech sound production, such as the location
of the tongue in relation to the lips; visual rhyme
relates words that look similar, such as cough and
bough, whether or not they sound alike; and struc-
tural rhyme links words through their sequence of
consonants and vowels. We describe these types of
rhyme in more detail in Section 4. For the remainder
of this paper, we use the term rhyme in reference to
this broader definition.

3 Related Work

Rhyme has been a subject for literary criticism and
especially the focus of attention by poets for hun-
dreds of years, and relates to the broader tradition
of analyzing and evaluating sound in poetry (Sid-
ney, 1583; Shelley, 1821; Aristotle, 1961; Wes-
ling, 1980; Howe, 1985). More recent literary crit-
icism has tended to focus its attention elsewhere,
leaving the discussion of rhyme in literary circles
largely to poetry handbooks. Notable exceptions oc-
cur in relation to hip-hop poetry and nursery rhymes
— perhaps a reflection of the tendency in high-
literary circles to treat rhyme as a more simple de-
vice than our collaborators see it as being — al-
though other writers share our interest in rhyme’s
complexities (McGuire, 1987; Stewart, 2009; Ca-
plan, 2014).

Computational research analyzing sound in text
stems from multiple fields, from digital humani-
ties to computational linguistics. Our research is
grounded in two sources of inquiry: sonic analysis
specific to poetry and literature, and formalisms for
describing sound. The latter problem of recognizing
phonetic units of words is a well studied one; we re-
fer the reader to (Jurafsky and Martin, 2008) for an

overview.
A significant body of research, stemming from

multiple fields, has been devoted to analyzing po-
etry. A number of tools and algorithms have been
designed for teaching (Tucker, n.d.), analyzing (Pla-
mondon, 2006; Kao and Jurafsky, 2012; Meneses et
al., 2013) translating (Byrd and Chodorow, 1985;
Genzel et al., 2010; Greene et al., 2010; Reddy and
Knight, 2011), and generating (Manurung et al.,
2000; Jiang and Zhou, 2010; Greene et al., 2010)
poetry, all of which attend, to some degree, to sound
and rhyme. While this work inspires our current re-
search, it considers a much more limited, traditional
definition of rhyme. As a result, these tools and al-
gorithms disregard many of the sound-related pat-
terns that we seek to reveal.

The growing body of research analyzing rhyme in
hip hop and rap lyrics (Kawahara, 2007; Hirjee and
Brown, 2009; Hirjee and Brown, 2010; Buda, 2004;
Addanki and Wu, 2013; Wu et al., 2013b) considers
a broader and more flexible definition of rhyme. Be-
cause these lyrics are meant primarily to be heard,
the emphasis is placed on rhymes that occur in close
proximity, as opposed to rhymes in poetry that can
occur anywhere across a poem. Furthermore, rhyme
analysis in hip hop and rap is purely sonic, and thus
does not include visual rhyme.

Several visualization tools that support the close
reading of poetry allow users to interactively explore
individual sounds and sonic patterns within text, and
consider a broader range of sonic devices (Smolin-
sky and Sokoloff, 2006; Chaturvedi et al., 2012;
Clement, 2012; Abdul-Rahman et al., 2013). For
example, PoemViewer (Abdul-Rahman et al., 2013)
visualizes various types of sound patterning such as
end rhyme, internal rhyme, assonance, consonance
and alliteration, and also provides phonetic informa-
tion across a poem. Enabling a somewhat deeper
exploration, ProseVis (Clement, 2012) provides the
complete information about the pronunciation of
each word within a text and allows users to browse
through visual encodings of different patterns re-
lated to the pronunciation information. While these
tools capture and visualize low-level details about
sound, our research goes a step further, building on
the sonic information in a poem to detect and query
complex sonic patterns.

Our work is most closely related to Pattern-

13

Word

Character(s)Phoneme transcription(s)

Syllables(s)

Coda (optional)NucleusOnset (optional)

Phoneme(s) Phoneme Phoneme(s)

Index

Stress

Data Type Attribute
Data Type

Phoneme

Consonant Vowel

Manner VoicePlace

Diphthong

length

Monophthong

location

OR

OR

troubling

T

t r o u b l i n gTR AH1 - B AH 0 L - IH 0 NG

TR AH B AH L IH NG
Onset Nucleus Coda

Syllable 1 Syllable 2 Syllable 3

R AH B AH L IH NG

Onset Nucleus CodaOnset Nucleus Coda

Figure 1: (left) The rhyming object data structure, which decomposes a word into several levels of sonic attributes.
The subtree to the right captures the various phonetic attributes of a phoneme. (right) Decomposition of the word
troubling into a rhyming object. The phonetic transcription is encoded using the ARPABET.

Finder (Smolinsky and Sokoloff, 2006) which al-
lows users to query patterns involving specific
sounds (characterized by one or multiple sonic at-
tributes) within a text. While our work supports
this kind of single sound patterning, it further allows
users to query complex combinations of both sounds
and characters in specified contexts.

4 A Formalism for Analyzing Rhyme

Our formalism for detecting and querying rhyme
within a poem is composed of three components: a
representation of the sonic and textual structure of
a poem; a mechanism for querying complex rhyme;
and a query notation designed for poets. We expand
on each of these below.

4.1 Rhyming Object Representation

To enable the detection of rhyme, we decompose
each word in a poem into its constituent sonic and
structural components. We call this decomposition a
rhyming object, which includes two subrepresenta-
tions. The first is a phoneme transcription that cap-
tures one or more pronunciations of the word, and
the second is a surface form defined by the word’s
string of characters. We illustrate the rhyming object
representation in Figure 1, along with the decompo-
sition of the word troubling into its phoneme tran-
scription and surface form. The phoneme transcrip-
tion is encoded using the ARPABET1, one of sev-
eral ASCII phonetic transcription codes. Our rhyme
specification strategy, described in Section 4.3, ex-
ploits every level of the rhyming object.

1The ARPABET was developed by the Advanced Research
Projects Agency (ARPA). More information may be found at
http://en.wikipedia.org/wiki/Arpabet (accessed 2/28/2015)

Each phoneme transcription is parsed into a se-
quence of syllables. Syllables are the basic orga-
nization of speech sounds and they play a critical
role in defining rhyme. An important attribute of
the syllable is its articulatory stress. In Figure 1
(right), the stress of each syllable, indicated as ei-
ther 1 (stressed) or 0 (unstressed), is highlighted
with a bounding box. Each syllable is also decom-
posed into its constituent onset, nucleus, and coda,
the leading consonant sound(s), vowel sound, and
trailing constant sound(s), respectively. It is impor-
tant to note that a syllable will always contain a nu-
cleus, whereas the onset and coda are optional —
the troubling example in Figure 1 illustrates these
variations. The onset, nucleus, and coda are fur-
ther decomposed into one or multiple phonemes.
Phonemes are the basic linguistic units of speech
sound and carry with them a number of attributes de-
scribing their physiological production (University
of Iowa, 2011).

picky/tricky

P IH1 - K IY0 TR IH1 - K IY0
Syll 1 Syll 2 Syll 1 Syll 2

O N stressed

unstressedO N

O N stressed

unstressedO N

Figure 2: The phoneme transcription of picky and tricky.

4.2 The Algebra of Rhyme

A broad range of rhymes can be expressed as com-
binations of rhyming object components. Take for
example the rhyme picky/tricky. Figure 2 shows
the phoneme transcription of each word — we de-

14

note onset with O, nucleus with N, and coda with
C. This phoneme transcription elucidates that the
rhyming segment, icky, contains the stressed nucleus
of the first syllable, combined with the onset and
unstressed nucleus of the second syllable. We can
mathematically express this rhyme as:

Nstressed
syll1 + (O+ N)unstressed

syll2 (1)

Picky/tricky is an instance of a perfect feminine
rhyme, which is a rhyme defined by an exact match
in sound beginning at a stressed nucleus in the
penultimate syllable. Equation 1 can also describe
other perfect feminine rhymes like scuba/tuba.

Neither of these examples, however, includes the
optional coda in its syllables. If we generalize Equa-
tion 1 to include these codas, and specifically only
consider the last two syllables of a word, we can de-
scribe all instances of perfect feminine rhyme, in-
cluding complex, multisyllabic rhymes like synes-
thesia/amnesia/freesia:

(N+ C)stressed
penultimate syll + (O+ N+ C)unstressed

last syll (2)

We use expressions like Equation 2 as a rule for
defining and detecting instances of a specific rhyme
type, in this case perfect feminine rhyme. Such
rules, which we call rhyming templates, are akin
to templates of regular expressions where each tem-
plate denotes a set of regular expressions.

4.3 ASCII Notation
Table 1 presents our ASCII notation for specifying
rhyming templates. Section A lists the general no-
tation applicable to both sonic and textual rhymes.
Note that the bracket [] is the fundamental nota-
tion for the templates and allows users to specify
the rhyming segment as well as the the context in
which it appears. Section B lists the notation spe-
cific to sonic rhymes, including the symbol indicat-
ing a syllable break -, as well as support for pho-
netic rhymes. Section C lists the notation specific to
visual and structural rhymes.

In designing this notation we attempted to balance
the competing needs of expressivity versus usability.
In particular, to make the notation usable by poets
we: limit the symbols to as few as possible; bor-
row symbols from existing phonetic transcription al-
phabets, namely the International Phonetic Alphabet

(IPA) (IPA, 1999) and the ARPABET; and avoid us-
ing symbols which may be overloaded within poetry
scholarship. While we appreciate that our notation
may cause confusion for regex users, we emphasize
that our target users are poets.

Table 2 presents a list of predefined rhyme types
deemed interesting by our poetry collaborators,
transcribed into our notation. This table serves
both as a reference for template building and as
an illustration of the expressivity of our notation.
Note the transcription of Equation 2 describing per-
fect feminine rhyme written more succinctly as
...-O[NC’ -ONC].

We observed our poetry collaborators taking two
different approaches when building new rhyming
templates. In the first approach they would build a
new template based on a generalized instance of a
rhyme, analogous to our perfect feminine rhyme ex-
ample in Section 4.2. The second approach we ob-
served is more exploratory, where the poets would
modify and expand a template based on iterative re-
sults. Our collaborators told us this approach felt
more natural to them as it is similar to practices in-
volved in close reading. We describe one poet’s ex-
perience with this second approach in Section 6.2.

5 RhymeDesign

We implemented our formalism for analyzing
rhyme in an open-source tool called RhymeDesign.
RhymeDesign allows users to query for a broad
range of rhyme types in a poem of their choos-
ing by selecting from a set of prebuilt rhyming
templates, or by building new templates using
the ASCII rhyming notation. In this section
we describe the major features of RhymeDesign,
namely the decomposition of text into rhyming
objects, the use of rhyming templates, and the
user interface. RhymeDesign is freely available at
RhymeDesign.org.

5.1 Text Decomposition

Obtaining the surface form of a word is straight-
forward, while producing the phoneme transcription
is a more complicated task. Within the literature
there are three approaches to completing this task:
integrating external knowledge using a pronuncia-
tion dictionary, using natural language processing

15

A. General Rhyme Notation
Notation Description
[brackets] indicates the matching portion of the rhyming pair (the rhyming segment)
... indicates that additional syllables/characters may or may not exist
& distinguishes between the rhyming pair words (e.g. word1/word2)
| indicates the occurrence of “one or both”
: indicates word break (e.g. for cross-word rhymes)
! indicates no match (must be placed at beginning of rule)
B. Sonic and Phonetic Rhyme Notation C. Visual and Structural Rhyme Notation
Notation Description Notation Description
O Onset (leading consonant phonemes) A Vowel
N Nucleus (vowel phoneme) B Consonant
C Coda (ending consonant phonemes) Y Vowel or Consonant
C‘ Required coda * Mixed character clusters e.g. “est/ets”
O‘ Required onset char (lowercase) specific character
- Syllable break A’ First vowel
’ Primary stress B’ First consonant
ˆ Stressed or unstressed {s} Match in structure
O {mvp} Match on onset manner/voice/place e.g. A {s} : A/O (vowel/vowel match)
C {mvp} Match on coda manner/voice/place
N {p} Match on nucleus place

Table 1: The ASCII rhyme notation: (A) general rhyme notation applicable to both sonic and visual rhymes; (B)
notation specific to sonic and phonetic rhymes; and (C) notation specific to visual and structural rhymes.

Rhyme Type Transcribed Rule Example
Identical Rhyme [... - O N Cˆ - ...] spruce/spruce;bass/bass;pair/pare/pear
Perfect Masculine ... - O [N C]’ rhyme/sublime
Perfect Feminine ... - O [N C’ - O N C] picky/tricky
Perfect Dactylic ... - O [N C’ - O N C - O N C] gravity/depravity
Semirhyme ...- O [N C]’ & ... - O [N C]’ - O N C end/bending; end/defending
Syllabic Rhyme ... - O [N C]’ & ... - O [N C] wing/caring
Consonant Slant Rhyme ... - O N [C]’ - ... years/yours; ant/bent
Vowel Slant Rhyme ...- O [N] C’ -... eyes/light
Pararhyme ... - [O‘] N [C‘]’ - ... tell/tail/tall
Syllabic 2 Rhyme O [N C]’ - ONC - ... restless/westward
Alliteration ...- [O‘] N C’ - ... languid/lazy/line/along
Assonance ... - O [N] Cˆ - ... blue/estuaries
Consonance ... - [O‘] | [C‘]ˆ - ... shell/chiffon; shell/wash;
Eye rhyme !O[NCˆ-...] and ...[A’...] cough/bough ; daughter/laughter
Forced rhyme ...-O[NC‘ {mv}]’-... one/thumb; shot/top/sock
Mixed 3-character cluster ...[YYY]*... restless/inlets
Structural rhyme [B {s}A {s}B {s}B {s}] fend/last

Table 2: A range of example rhyme types represented using the ASCII rhyme notation.

16

Figure 3: The RhymeDesign interface comprises two browser windows, the main RhymeDesign interface and a no-
tation guide that provides a quick reference for rhyme specification. In the main interface, a user can upload a poem
of his/her choosing, generate custom rhyming templates or choose from existing ones, and extract sets of rhyming
words based on chosen templates. An option to Combine Templates allows users to query rhymes combining patterns
in sounds and characters.

tools, or using some combination of the two. In
RhymeDesign we use the hybrid approach.

For external knowledge we rely on the Carnegie
Mellon University (CMU) pronunciation dictionary
(CMU, 1998). The CMU dictionary provides the
phoneme transcriptions of over 125K words in the
North American English lexicon. Words are mapped
to anywhere from one to three transcriptions, taking
into account differing pronunciations as well as in-
stances of homographs. Syllable boundaries are not
provided in the original CMU transcriptions; how-
ever, the syllabified CMU dictionary (Bartlett et al.,
2009) addresses this problem by training a classifier
to identify syllable boundaries.

When relying on any dictionary there is a high
likelihood, particularly in the domain of poetry,
that a given text will have one or multiple out-of-
dictionary words. To address this, we’ve integrated
existing letter-to-sound (LTS) rules (Black et al.,
1998) and syllable segmentation algorithms (Bartlett
et al., 2009) to predict the phoneme transcriptions of

out-of-dictionary words. Adapted from CMU’s Fes-
tivox voice building tools (Black, n.d.), the LTS sys-
tem was trained on the CMU dictionary in order to
generate the most consistent results.

It is important to note that each of these phoneme
transcription methods introduces a different element
of uncertainty into our analysis. For in-dictionary
words there is a possibility that the CMU dictionary
will return the wrong homograph, while for out-of-
dictionary words there is a chance the LTS system
will simply predict a mispronunciation. Our poetry
collaborators find this uncertainty incredibly inter-
esting as it reveals possible sonic devices that expe-
rienced readers have been hard-wired to neglect. We
therefore expose this uncertainty in RhymeDesign
and allow users to address it as they wish.

To summarize the decomposition process, raw
text is split into words by tokenizing on whitespace.
For each word, we first check to see if it exists in our
pronunciation dictionary. If it does, it is tagged as an
in-dictionary word and its phoneme transcription(s)

17

are retrieved directly. If not, it is tagged as an out-
of-dictionary word and its phoneme transcription is
predicted using our LTS methods. Transcriptions are
then parsed down to the phoneme level, and a look-
up table is used to retrieve phonetic properties.

5.2 Rhyme Detection

Given a rhyming template, our detection engine it-
erates through every pair of words in the poem, ex-
tracting all possible rhyme segments for each word,
and comparing them to find all instances of rhyme.
Each new instance of rhyme is then either added to
an existing rhyme set or initiates a new rhyme set.

Our detection engine is similar to a typical regex
engine, but with a few important differences. First,
our engine performs on a pairwise basis and at-
tempts to establish a match based on a generic tem-
plate. The process of extracting rhyme segments is
also similar to that of regex engines, in which the
engine marches through both the expression and the
subject string, advancing only if a match is found
on the current token. However, for expressions with
multiple permutations, rather than only returning the
leftmost match, as is the case for regex engines, our
engine returns all matches to ensure that all existing
patterns are revealed.

5.3 User Interface

As shown in Figure 3, RhymeDesign is composed of
two browser windows, the main RhymeDesign inter-
face and a notation guide that provides a quick ref-
erence for rhyme specification. In the main interface
a user can upload a poem of his/her choosing, gen-
erate novel rhyming templates or choose from exist-
ing ones, and extract sets of rhyming words based on
chosen templates. An option to Combine Templates
allows users to query rhymes combining patterns in
sounds and characters. The resulting sets of words
are specified in a results file, organized by rhyming
template. This file also includes alternative pro-
nunciation options for in-dictionary words, and the
predicted pronunciation for out-of-dictionary words.
Pronunciation modifications are made in an uncer-
tainty file, where users may specify alternative pro-
nunciations for in-dictionary words, or enter custom
pronunciations for both in- and out-of-dictionary
words. For more details on the use of RhymeDesign
and the formats of the resulting files, please see the

user documentation at RhymeDesign.org.

6 Validation

Our validation takes two forms: the first is an ex-
periment that tests our formalism and the expressiv-
ity of our rhyming language; the second is a qual-
itative evaluation of RhymeDesign which includes
a description of how two of our collaborators used
RhymeDesign in a close reading.

6.1 Formalism

To validate our formalism we designed an exper-
iment to test the expressivity of the rhyming lan-
guage. For this experiment we requested examples
of interesting rhyme types from our collaborators,
along with a brief description of the rhyming char-
acteristics. For each example we asked for two dif-
ferent instances of the same rhyme type. One mem-
ber of the research team then manually composed
a rhyming template for each of the examples based
on the example’s description and first instance (the
prototype). The rhyming templates were then run
against the second instances (the test prototypes).
This allowed us to check that the new rhyming tem-
plates were in fact detecting their associated second
instances, and that any other instances detected were
indeed suitable.

Gathering the examples turned out to be more
challenging than we anticipated. We soon realized
that coming up with new rhyme types was a very
involved research task for our poetry collaborators.
The end result was a smaller set of 17 examples than
our initial goal of 20-30. Some of the examples
we received were incomplete, requiring us to iterate
with our collaborators on the descriptions; generate
second instances ourselves (by someone other than
the template builder); or in some cases to proceed
with only one instance. Our results from this exper-
iment are summarized in Table 3, however we high-
light our favorite example here, the cross-word ana-
gram Britney Spears/Presbyterians, which can be
represented using the rhyming template [...Y...
: ...Y...]* & [...Y...].

While we were able to express the majority
(14/17) of examples, we found at least one oppor-
tunity to improve our notation in a way that allowed
us to express certain rhyme types more succinctly.

18

Prototype Description Template T.P.
1. blessed/blast pararhyme ...-[O‘]N[C‘]’-... Y
2. orchard/tortured ear rhyme ...-O[NC’-...] and !...[A’...] Y
3. bard/drab/brad anagram [...Y...]* Y
4. Britney Spears/presbyterians cross word anagram [...Y... : ...Y...]* & [...Y...]* Y
5. paws/players character pararhyme [Y]...[Y] Y
6. span/his pan cross word rhyme [...Y...] & ...[Y]:[...Y...] Y
7. ethereal/blow flipped vowel+L/L+vowel ...[Al]*... Y
8. brittle/fumble match on final coda and character cluster ...-ON[C]ˆ and ...[..YY] Y
9. soul/on near assonance (shared place on nucleus) ...-O[N {p}]C’-... and !...-O[N]C’-... Y
10. dress/wantonness perfect rhyme, mono/polysyllable words O[NC]’ & ...-ONCˆ-O[NC]ˆ Y
11. stone/home/unknown Matching vowel, final consonants differ by

one phonetic attribute
...-O[NC {mv}]ˆ N

12. paws/still last character of first word matches with
first character of second word

...[Y]&[Y]... Y

13. blushing crow/crushing blow spoonerism [O‘]NCˆ-...:ONCˆ-... & ONCˆ-
...:[O‘]NCˆ-... and ONCˆ-
...:[O‘]NCˆ-... & [O‘]NCˆ-...:ONCˆ-
... and O[NCˆ-...]:O[NCˆ-...]

Y
(1:2)

14. nevermore/raven reversed consonant sounds [B]ABAB...& BABA[B]... and
BABA[B]...& [B]ABAB... and
BA[B]AB...

NA

15. separation/kevin bacon match in all vowel sounds
16. crystal text/tristal crest chiastic rhyme
17. whack-a-mole/guacamole hybrid ear-eye rhyme

Table 3: The results of our expressivity experiment. Examples 1- 14 could be expressed using our language. Of the
3 that we failed to express (15-17), 2 of them (16,17) could not be precisely defined by our collaborators. Y/N in
the rightmost column indicates whether test prototypes were detected. We note that the test prototype for example 11
did not follow the same pattern as the original example prototype. We have since modified our notation to express
examples 13 and 14 more succinctly.

Of the 3 examples that we failed to express using
our language (items 15-17 in Table 3), 2 of them
(16,17) could not be precisely defined by our col-
laborators. Incidentally, a few other instances of in-
definable rhyme were encountered earlier in the ex-
ample collection process. The question of how to
capture patterns that cannot be precisely defined is
something that we are very interested in exploring
in our future work.

Of the examples that we were able to express, all
but two of the test prototypes were detected. One
example provided two test prototypes, of which only
one was detected, and the other test prototype that
we failed to detect did not follow the same pattern
as the original example prototype.

6.2 RhymeDesign

Validation for RhymeDesign came in the form of in-
formal user feedback. We conducted interviews with
two of our poetry collaborators, each of whom were

asked to bring a poem with interesting sonic pat-
terns. Interviews began with an introduction to the
formalism, followed by a tour of the RhymeDesign
interface. Each poet was then given time to experi-
ment with querying different kinds of rhyme.

We conducted the first interview with a poet who
brought the poem “Night” by Louise Bogan. Tak-
ing an exploratory approach to template building,
she began by querying rhymes involving a vowel
followed by two consonants ...[ABB].... This
turned up several different rhyming sets, one of
which connected the words partial and heart via the
art character cluster. Shifting her attention from art
to ear in heart, she then queried rhymes involving
mixed ear clusters ...[ear]*.... This revealed
a new pattern connecting heart with breathes and
clear. This is illustrated in Figure 4. She told us
that she suspected she would have connected clear
and heart on her own, but she said she thought it un-
likely she would have noticed the words’ shared link

19

with breathes. This connection, and especially the
fact that it was found by way of the ear cluster was
thrilling to this poet, as it prompted her to recon-
sider roles and interrelations of the ear, heart, and
breath in the context of writing poetry as set forth in
Charles Olson’s seminal 1950 poetics essay, “Pro-
jective Verse” — she is pursuing the ramifications
of this potential theoretical reframing in ongoing re-
search. In reflection, she commented that this ex-
ploratory approach was very similar to how close
readings were conducted, and that RhymeDesign
naturally facilitated it.

Figure 4: Excerpt from the poem “Night” by Louise Bo-
gan, with the detected ...[ear]*... rhyming set shown in
bold. Ellipses indicate skipped lines.

We conducted the second interview with a poet
who brought “Platin” by Peter Inman, which is a
poem composed almost entirely of non-words. Us-
ing RhymeDesign she was able to query a range of
patterns involving character clusters as well as dif-
ferent kinds of structural rhymes. Exploring sonic
patterns proved to be very interesting as well. Given
a non-word, it is the natural tendency of a reader to
predict its pronunciation. This is similar to the pre-
diction made by the automated LTS system. Com-
paring the predicted pronunciations of the reader
with that of the computer revealed new paths of ex-
ploration and potential sources of experimentation
on the part of Peter Inman. This poet commented
that using RhymeDesign was the perfect way to re-
search language poetry, and that it was a great way
to gain entrance into a complicated and possibly in-
timidating text. Furthermore, she noted that “using
Rhyme Design has had the delightful side effect of
deepening my understanding of language structures,
sound, rhyme, rhythm, and overall facture of words
both written and spoken...which can only make me a
better, more sophisticated poet”. Finally, she said
that RhymeDesign affirmed previous observations
made in her own close readings of the same poem.

7 Conclusions & Future Work

This paper presents two contributions. The first is
a formalism for analyzing sonic devices in poetry.
As part of this formalism we identify a language
for specifying new types of complex rhymes, and
we design a corresponding ASCII notation for po-
ets. While both our language and notation may not
be complete, we present a first iteration which we
will continue to develop and improve based on ex-
tensive user feedback. Our second contribution is an
open-source implementation of the formalism called
RhymeDesign. We validated both the formalism and
RhymeDesign with our poetry collaborators.

One of the biggest challenges that we encounter in
this research stems from our grapheme-to-phoneme
(g2p) conversion. Our use of the CMU pronuncia-
tion dictionary restricts our analysis to one very spe-
cific lexicon and dialect. This restriction is prob-
lematic for poetry, where pronunciations span a vast
number of dialects, both geographically and tem-
porally, and where reaching across dialects can be
a sonic device within itself. While automated g2p
techniques have come along way, we suspect that
even an ideal g2p converter would fail to support the
complex tasks outlined in this paper. One interest-
ing approach that we would like to explore would be
to integrate speech and phone recognition software,
thereby allowing a user to perform the sonic analysis
based on his/her own reading of the poem.

Other future work we plan to explore includes the
automation of rhyme template generation using ma-
chine learning techniques. This could allow users to
select words sharing some sonic resemblance, and
extract additional sets of words connected through
similar sonic themes. We will also work towards
building a visualization tool on top of RhymeDesign
that would permit users to explore the interaction of
sonic devices in the space of the poem.

Acknowledgments

We are deeply grateful for the participation of our
poetry collaborators, Professor Katherine Coles and
Dr. Julie Lein, throughout this project. Thanks to
Jules Penham who helped us test the RhymeDesign
interface and gathered test data for the evaluation.
This work was funded in part by NSF grant IIS-
1350896 and NEH grant HD-229002.

20

References
Alfie Abdul-Rahman, Julie Lein, Katharine Coles, Ea-

monn Maguire, Miriah Meyer, and Martin Wynne,
Chris Johnson, Anne E. Trefethen, Min Chen. 2013.
Rule-based Visual Mappings - with a Case Study on
Poetry Visualization. In Computer Graphics Forum,
32(3):381-390.

Aristotle 1961 Poetics. Trans. S. H. Butcher. Hill and
Wang. pages 95-104.

Karteek Addanki and Dekai Wu. 2013. Unsupervised
Rhyme Scheme Identification in Hip Hop Lyrics us-
ing Hidden Markov Models. Proceedings of the 1st
International Conference on Statistical Language and
Speech Processing (SLSP - 2013), Tarragona, Spain.

Susan Bartlett, Grzegorz Kondrak, and Colin Cherry.
2009. On the syllabification of phonemes. In Pro-
ceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL ’09). Association for Computational Lin-
guistics, Stroudsburg, PA, USA, 308316.

Alan W. Black, Kevin Lenzo and Vincent Pagel. 1998.
Issues in building general letter to sound rules. Inter-
national Speech Communication Association. ESCA
Workshop in Speech Synthesis, Australia. pages 7780.

Bradley Buda. 2004. A System for the Automatic Identifi-
cation of Rhymes in English Text. University of Michi-
gan.

Roy J. Byrd and Martin S. Chodorow. 1985. Us-
ing an on-line dictionary to find rhyming words
and pronunciations for unknown words. In Pro-
ceedings of the 23rd annual meeting on Associa-
tion for Computational Linguistics (ACL ’85). As-
sociation for Computational Linguistics, Stroudsburg,
PA, USA, 277-283. DOI=10.3115/981210.981244
http://dx.doi.org/10.3115/981210.981244

Manish Chaturvedi, Gerald Gannod, Laura Mandell, He-
len Armstrong, Eric Hodgson. 2012. Rhyme’s Chal-
lenge: Hip Hop, Poetry, and Contemporary Rhyming
Culture. Oxford University Press, 2014 - Literary Crit-
icism - 178 pages.

Manish Chaturvedi, Gerald Gannod, Laura Mandell, He-
len Armstrong, Eric Hodgson. 2012. Myopia: A Vi-
sualization Tool in Support of Close Reading. Digital
Humanities 2012.

Tanya Clement. 2012. Distant Listening or Playing Visu-
alizations Pleasantly with the Eyes and Ears. Digital
Studies / Le champ numrique. 3.2.

CMU. 1998. Carnegie Mellon Pronouncing Dictionary.
Carnegie MellonUniversity: http://www. speech. cs.
cmu. edu/cgi-bin/cmudict.

Alan W. Black n.d. Carnegie Mellon Pronounc-
ing Dictionary. [computer software] available from
http://www.festvox.org

Dmitriy Genzel and Jakob Uszkoreit and Franz Och.
2010. “Poetic” Statistical Machine Translation:
Rhyme and Meter. Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 158-166.

Matthew K. Gold, ed. 2012 Debates in the Digital Hu-
manities. Minneapolis, MN, USA: University of Min-
nesota Press. Retrieved from http://www.ebrary.com

Erica Greene , Tugba Bodrumlu and Kevin Knight. 2010.
Automatic Analysis of Rhythmic Poetry with Applica-
tions to Generation and Translation. Proceedings of
the 2010 Conference on Empirical Methods in Natural
Language Processing, pages 524533

Hussein Hirjee and Daniel Brown. 2010. Using auto-
mated rhyme detection to characterize rhyming style
in rap music. Empirical Musicology Review.

Hussein Hirjee and Daniel Brown. 2009. Automatic
Detection of Internal and Imperfect Rhymes in Rap
Lyrics. In Proceedings of the 10th International Soci-
ety for Music Information Retrieval Conference. pages
711-716.

Susan Howe. 1985. My Emily Dickinson. New Direc-
tions.

International Phonetic Association. 1999. Handbook of
the International Phonetic Association: A Guide to
the Use of the International Phonetic Alphabet. Cam-
bridge University Press.

Long Jiang and Ming Zhou. 2010. Generating Chinese
Couplets Using a Statistical MT Approach. Proceed-
ings of the 22nd International Conference on Compu-
tational Linguistics, COLING 2008, vol. 1, pages 377-
384.

Daniel Jurafsky and James H. Martin. 2008 Speech
and language processing: An introduction to speech
recognition. Computational Linguistics and Natural
Language Processing. 2nd Edn. Prentice Hall, ISBN,
10(0131873210), 794-800.

Justine Kao and Dan Jurafsky. 2012. A computational
analysis of style, affect, and imagery in contemporary
poetry. Proceedings of NAACL 2012 Workshop on
Computational Linguistics for Literature.

Shigeto Kawahara. 2007. Half rhymes in Japanese rap
lyrics and knowledge of similarity Journal of East
Asian Linguistics, 16(2), pages 113-144.

Hisar M Manurung, Graeme Ritchie, and Henry Thomp-
son. 2000. Towards A Computational Model of Poetry
Generation. In Proceedings of AISB Symposium on
Creative and Cultural Aspects and Applications of AI
and Cognitive Science. pages 7986.

Philip C. McGuire. 2006 “Shakespeare’s Non-
Shakespearean Sonnets.” Shakespeare Quarterly.
38:3, pages 304-319.

21

Luis Meneses, Richard Furuta, Laura Mandell. 2006.
Ambiances: A Framework to Write and Visu-
alize Poetry. Digital Humanities 2013: URL:
http://dh2013.unl.edu/abstracts/ab-365.html

Marc R. Plamondon. 2006 Virtual verse analysis:
Analysing patterns in poetry. Literary and Linguis-
tic Computing 21, suppl 1 (2006), 127–141. 2

Percy Bysshe Shelley. 1821. A Defence
of Poetry. The Poetry Foundation. URL:
http://www.poetryfoundation.org/learning/poetics-
essay/237844

Sravana Reddy and Kevin Knight. 2011. Unsupervised
Discovery of Rhyme Schemes. Proceedings of the
49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies.
pages 7782.

Sir Philip Sidney. 1583. The Defence of
Poesy. The Poetry Foundation. URL:
http://www.poetryfoundation.org/learning/poetics-
essay/237818

Stephanie Smolinsky and Constantine Sokoloff. 2006.
Introducing the Pattern-Finder Conference abstract:
Digital Humanities 2006.

Susan Stewart. 2009. “Rhyme and Freedom.” The
Sound of Poetry / The Poetry of Sound. Ed. Marjorie
Perloff and Craig Dworkin. University of Chicago
Press, pages 29-48.

Herbert Tucker. n.d. For Better For Verse University of
Virginia, Department of English.

The University of Iowa. 2011. Phonetics: The Sounds
of English and Spanish - The University of Iowa.”
Phonetics: The Sounds of English and Spanish. The
University of Iowa. N.p., n.d. Web. 22 Nov. 2013.
http://www.uiowa.edu/ acadtech/phonetics/#

Donald Wesling 1980. The Chances of
Rhyme: Device and Modernity. Berkeley:
University of California Press, c1980 1980.
http://ark.cdlib.org/ark:/13030/ft0f59n71x/.

Dekai Wu and Karteek Addanki. 2013. Modeling hip
hop challenge-response lyrics as machine translation.
4th Machine Translation Summit (MT Summit XIV).

22

