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Abstract

We explore a rule-based methodology for the
BioNLP’09 Shared Task on Event Extrac-
tion, using dependency parsing as the under-
lying principle for extracting and characteriz-
ing events. We approach the speculation and
negation detection task with the same princi-
ple. Evaluation results demonstrate the util-
ity of this syntax-based approach and point out
some shortcomings that need to be addressed
in future work.

1 Introduction

Exponential increase in the amount of genomic data
necessitates sophisticated approaches to accessing
knowledge in molecular biology literature, which re-
mains the primary medium for disseminating new
knowledge in molecular biology. Extracting rela-
tions and events directly from free text facilitates
such access. Advances made in foundational areas,
such as parsing and named entity recognition, boosts
the interest in biological event extraction (Zweigen-
baum et al., 2007). The BioNLP’09 Shared Task on
Event Extraction illustrates this shift and is likely to
inform future endeavors in the field.

The difficulty of extracting biological events from
scientific literature is due to several factors. First,
sentences are long and often have long-range depen-
dencies. In addition, the biological processes de-
scribed are generally complex, involving multiple
genes or proteins as well as other biological pro-
cesses. Furthermore, biological text is rich in higher
level phenomena, such as speculation and negation,

which need to be dealt with for correct interpreta-
tion of the text. Despite all this complexity, how-
ever, a closer look at various biological corpora also
suggests that beneath the complexity lie regularities,
which may potentially be exploited using relatively
simple heuristics.

We participated in Task 1 and Task 3 of the
Shared Task on Event Extraction. Our approach
draws primarily from dependency parse representa-
tion (Mel’čuk, 1988; deMarneffe et al., 2006). This
representation, with its ability to reveal long-range
dependencies, is suitable for building event extrac-
tion systems. Dependencies typed with grammatical
relations, in particular, benefit such applications. To
detect and characterize biological events (Task 1),
we constructed a dictionary of event triggers based
on training corpus annotations. Syntactic depen-
dency paths between event triggers and event partic-
ipants in the training corpus served in developing a
grammar for participant identification. For specula-
tion and negation recognition (Task 3), we extended
and refined our prior work in speculative language
identification, which involved dependency relations
as well. Our results show that dependency relations,
despite their imperfections, provide a good founda-
tion, on which accurate and reliable event extraction
systems can be built and that the regularities of bio-
logical text can be adequately exploited with a lim-
ited set of syntactic patterns.

2 Related Work

Co-occurrence based approaches (Jenssen et al.,
2001; Ding et al., 2002) to biological relation ex-
traction provide high recall at the expense of low
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precision. Shallow parsing and syntactic templates
(Blaschke et al., 1999; Rindflesch et al., 2000; Fried-
man et al., 2001; Blaschke and Valencia, 2001;
Leroy et al., 2003; Ahlers et al., 2007), as well as
full parsing (Daraselia et al., 2004; Yakushiji et al.,
2005), have also been explored as the basis for re-
lation extraction. In contrast to co-occurrence based
methods, these more sophisticated approaches pro-
vide higher precision at the expense of lower recall.
Approaches combining the strengths of complemen-
tary models have also been proposed (Bunescu et al.,
2006) for high recall and precision.

More recently, dependency parse representation
has found considerable use in relation extraction,
particularly in extraction of protein-protein interac-
tions (PPI). Fundel et al. (2007) use Stanford depen-
dency parses of Medline abstracts as the basis for
rules that extract gene/protein interactions. Rinaldi
et al. (2007) extract relations combining a hand-
written grammar based on dependency parsing with
a statistical language model. Airola et al. (2008) ex-
tract protein-protein interactions from scientific lit-
erature using supervised machine learning based on
an all-dependency-paths kernel.

The speculative aspect of the biomedical literature
(also referred to as hedging) has been the focus of
several recent studies. These studies primarily dealt
with distinguishing speculative sentences from non-
speculative ones. Supervised machine learning tech-
niques mostly dominate this area of research (Light
et al., 2004; Medlock and Briscoe, 2007; Szarvas,
2008). A more linguistically-based approach, rely-
ing on lexical and syntactic patterns, has been ex-
plored as well (Kilicoglu and Bergler, 2008). The
scope of speculative statements is annotated in the
BioScope corpus (Vincze et al., 2008); however, ex-
periments in detecting speculation scope have yet to
be reported.

Recognizing whether extracted events are negated
is crucial, as negation reverses the meaning of a
proposition. Most of the work on negation in
the biomedical domain focused on finding negated
terms or concepts. Some of these systems are
rule-based and rely on lexical or syntactic informa-
tion (Mutalik et al., 2001; Chapman et al., 2001;
Sanchez-Graillet and Poesio, 2007); while others
(Averbuch et al., 2004; Goldin and Chapman, 2003)
experiment with machine learning techniques. A re-

cent study (Morante et al., 2008) focuses on learn-
ing negation scope using memory-based classifiers
trained on the BioScope corpus.

Our approach to Task 1 is most similar to work
of Fundel et al. (2007) as it builds on dependency-
based heuristics. However, we address a larger num-
ber of event classes, including regulatory events al-
lowing participation of other events. In addition,
event triggers are central to our approach, contrast-
ing with their system and most other PPI systems
that rely on finding dependency paths between enti-
ties. We extended prior work for Task 3 and obtained
state of the art results.

3 Event Detection and Characterization

As preparation for biological event extraction, we
combined the provided annotations, tokenized in-
put and dependency parses in an XML representa-
tion. Next, we determined good trigger words for
event classes and scored them. Finally, we devel-
oped a dependency-based grammar for event partici-
pant identification, which drives our event extraction
system.

3.1 Data Preprocessing
Our event detection and characterization pipeline re-
quires XML representation of a document as in-
put. Here, the XML representation of a document
contains sentences, their offset positions and de-
pendency parses as well as entities (Proteins) and
their offset positions in addition to word information
(tokens, part-of-speech tags, indexes and lemmas).
We used the Stanford Lexicalized Parser (Klein and
Manning, 2003) to extract word-related information,
as well as for dependency parsing.

3.2 Event Triggers
After parsing the training corpus and creating an en-
riched document representation, we proceeded with
constructing a dictionary of event triggers, draw-
ing from training corpus annotations of triggers and
making further refinements, as described below.

We view event triggers essentially as predicates
and thus restricted event triggers to words carrying
verb, noun or adjective part-of-speech tags. Our
analysis suggests that, in general, trigger words with
other POS tags are tenuously annotated event trig-
gers and in fact require more context to qualify as
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event triggers. In Example (1), by is annotated
as trigger for a Positive regulation event;
however, it seems that the meaning of the entire
prepositional phrase introduced with by contributes
to trigger such an event:

(1) These data suggest a general role for Tax in-
duction of IL-1alpha gene transcription by the
NF-kappaB pathway.

We refined the event trigger list further through
limited term expansion and filtering, based on sev-
eral observations:

1. The event triggers with prefixes, such as
co, down and up, (e.g., coexpression, down-
regulate) were expanded to include both hy-
phenated and non-hyphenated forms.

2. For a trigger that has inflectional/derivational
forms acting as triggers in the development cor-
pus but not in the training corpus, we added
these forms as event triggers. Examples include
adding dimerization after dimerize and dimin-
ished(adj) after diminish, among others.

3. We removed several event triggers, which, we
considered, required more context to qualify
as event triggers for the corresponding event
classes. (e.g., absence, absent, follow, lack)

Finally, we did not consider multi-word event
triggers. We observed that core trigger meaning
generally came from a single word token (gener-
ally head of a noun phrase) in the fragment an-
notated as event trigger. For instance, for trigger
transcriptional activation, the annotated event class
is Positive regulation, which suggests that
the head activation carries the meaning in this in-
stance (since transcriptional is an event trigger for
the distinct Transcription event class). In an-
other instance, the trigger binding activity is anno-
tated as triggering a Binding event, indicating that
the head word activity is semantically empty. We
noted some exceptions to this constraint (e.g., neg-
atively regulate, positive regulation) and dealt with
them in the postprocessing step.

For the remaining event triggers, we computed a
“goodness score” via maximum likelihood estima-
tion. For a given event class C and event trigger t,
the ”goodness score” G(t,C) then is:

G(t,C) = w(C:t)/w(t)

where w(C:t) is the number of times t occurs as a
trigger for event class C and w(t) is the frequency
of trigger t in the training corpus. The newly added
event triggers were assigned the same scores as the
trigger they are derived from.

In the event extraction step, we do not consider
event triggers with a score below an empirically de-
termined threshold.

3.3 Dependency relations for event participant
identification

To identify the event participants Theme and Cause,
we developed a grammar based on the “collapsed”
version of Stanford Parser dependency parses of
sentences. Grammar development was driven by
extraction and ranking of typed dependency rela-
tion paths connecting event triggers to correspond-
ing event participants in the training data. We then
analyzed these paths and implemented as rules those
deemed to be both correct and sufficiently general.

More than 2,000 dependency paths were ex-
tracted; however, their distribution was Zipfian, with
approximately 70% of them occurring only once.
We concentrated on the most frequent, therefore
general, dependency paths. Unsurprisingly, the most
frequent dependency path involved the dobj (direct
object) dependency between verbal event triggers
and Theme participants, occurring 826 times. Next
was the nn (nominal modifier) dependency between
nominal event triggers and their Theme participants.
The most frequent dependency for Cause partici-
pants was, again unsurprisingly, nsubj (nominal sub-
ject). The ranking of dependency paths indicated
that path length is inversely proportional to reliabil-
ity. We implemented a total of 27 dependency path
patterns.

Some of these patterns specifically address de-
ficiencies of the Stanford Parser. Prepositional
phrases are often attached incorrectly, causing prob-
lems in participant identification. Consider, for ex-
ample, one of the more frequent dependency paths,
dobj-prep on (direct object dependency followed by
prepositional modifier headed in on), occurring be-
tween the event trigger (effect) and participant (ex-
pression, itself a sub-event trigger):

(2) We have examined the effect of leukotriene B4
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(LTB4), a potent lipid proinflammatory medi-
ator, on the expression of the proto-oncogenes
c-jun and c-fos.
dobj(examined,effect)
prep on(examined,expression)

This dependency path occurs almost exclusively
with PP attachment errors involving on, leading us
to stipulate a “corrective” dependency path, imple-
mented for certain trigger words (e.g., effect, influ-
ence, impact in this case). Postnominal preposi-
tional attachment heuristics detailed in Schuman and
Bergler (2006) helped determine 6 such patterns.

Two common verbs (require and involve) deserve
special attention, as the semantic roles of their sub-
ject/object constituents differ from typical verbs.
The prototypical Cause dependency, nsubj, indicates
a Theme in the following sentence:

(3) Regulation of interleukin-1beta transcription
by Epstein-Barr virus involves a number of la-
tent proteins via their interaction with RBP.
nsubj(involves,Regulation)

For these two verbs, participant identification rules
are reversed.

An interesting phenomenon is NPs with hyphen-
ated adjectival modifiers, occurring frequently in
molecular biology texts (e.g., “... LPS-mediated
TF expression...”). The majority of these cases in-
volve regulatory events. Such cases do not in-
volve a dependency path, as the participant (in
this case, LPS) and the event trigger (mediated)
form a single word. An additional rule ad-
dresses these cases, stipulating that the substring
preceding the hyphen is the Cause of the regu-
latory event triggered by the substring following
the hyphen. (Positive regulation (Trig-
ger=mediated,Theme=TF expression,Cause=LPS)).

Events allowing event participants (regulatory
events) are treated essentially the same way as
events taking entity participants. The main differ-
ence is that, when sub-events are considered, a de-
pendency path is found between the trigger of the
main event and the trigger of its sub-event, rather
than an annotated entity, as was shown above in Ex-
ample (2).

3.4 Extracting Events
The event detection and characterization pipeline
(Task 1) consists of three steps:

1. Determining whether a word is an event trigger.

2. If the word is an event trigger, identifying its
potential participant(s).

3. If the event trigger corresponds to a regula-
tory event and it has a potential sub-event
participant, determining in a recursive fashion
whether the sub-event is a valid event.

The first step is a simple dictionary lookup. Pro-
vided that a word is tagged as noun, verb or adjec-
tive, we check whether it is in our dictionary, and if
so, determine the event class for which it has a score
above the given threshold. This word is considered
the clue for an event.

We then apply our dependency-based rules to de-
termine whether any entity or event trigger (in the
case of regulatory events) in the sentence qualifies
as an argument of the event clue. Grammar rules are
applied in the order of simplicity; rules that involve
a direct dependency between the clue and any word
of the entity are considered first.

Once a list of potential participants is obtained
by consecutive application of the rules, one of
two things may happen: Provided that sub-events
are not involved and appropriate participants have
been identified (e.g., a Theme is found for a
Localization event), the event is simply added
to the extracted event list. Otherwise, we proceed
recursively to determine whether the sub-event par-
ticipant can be resolved to a simple event. If this
yields no such simple event in the end, the event in
question is rejected. In the following example, the
event triggered by inhibit is invalid even though its
Cause JunB is recognized, because its Theme, sub-
event triggered by activation, cannot be assigned a
Theme and therefore is considered invalid.

(4) ..., JunB, is shown to inhibit activation medi-
ated by JunD.

After events are extracted in this manner, two
postprocessing rules ensure increased accuracy.
One rule deals with a limited set of multi-
word event triggers. If a Regulation event
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has been identified and the event trigger is
modified by positive or negative (or inflec-
tional forms positively, negatively), the event
class is updated to Positive regulation or
Negative regulation, respectively. The sec-
ond rule deals with the limitation of not allowing
multiple events on the same trigger and adds to
the extracted event list a Positive regulation
event, if a Gene expression event was recog-
nized for certain triggers, including overexpression
and several others related to transfection (e.g., trans-
fect, transfection, cotransfect).

Two grammatical constructions are crucial to de-
termining the event participants: coordination and
apposition. We summarize how they affect event ex-
traction below.

3.4.1 Coordination
Coordination plays two important roles in event

extraction:

1. When the event trigger is conjoined with an-
other word token, dependency relations con-
cerning the other conjunct are also considered
for participant identification.

2. When an event is detected and its participant
is found to be coordinated with other entities,
new events are created with the event trigger
and each of these entities. An exception are
Binding events, which may have multiple
Themes. In this case, we add conjunct entities
as the Themes of the base event.

Coordination between words is largely determined
by dependency relations. The participants of a de-
pendency with a type descending from conj (con-
junct) are considered coordinated (e.g., conj and,
conj or).

Recognizing that Stanford dependency parsing
misses some expressions of coordinated entities typ-
ical of biological text (in particular, those involving
parentheses), we implemented a few additional rules
to better resolve coordinated entities. These rules
stipulate that entities that have between them:

1. Only a comma (,) or a semi-colon (;)

2. A word with CC (coordinating conjunction)
part-of-speech tag

3. A complete parenthetical expression

4. Any combination of the above

are coordinated. For instance, in Example (5), we
recognize the coordination between interleukin-2
and IL-4, even though the parser does not:

(5) The activation of NFAT by TCR signals has
been well described for interleukin-2 (IL-2)
and IL-4 gene transcription in T cells.
conj and(interleukin-2,transcription)

3.4.2 Apposition
Words in an apposition construction are con-

sidered equivalent for event extraction purposes.
Therefore, if an appropriate dependency exists be-
tween a word and the trigger and the word is in ap-
position with an entity, that entity is marked as the
event participant. In Example 6, the appos (apposi-
tive) dependency shown serves to extract the event
Positive regulation (Trigger=upregulation,
Theme=intercellular adhesion molecule-1):

(6) ... upregulation of the lung vascular adhesion
molecule, intercellular adhesion molecule-1,
was greatly reduced by...
appos(molecule,molecule-1)
prep of(upregulation,molecule)

The dependencies that we consider to encode ap-
position constructions are: appos (appositive), ab-
brev (abbreviation), prep {including, such as, com-
pared to, compared with, versus} (prepositional
modifier marked with including, such as, compared
to, compared with or versus).

3.5 Speculation and Negation Detection
Once an event list is obtained for a sentence,
our speculation and negation module determines
whether these events are speculated and/or negated,
using additional dependency-based heuristics that
consider the dependencies between the event trigger
and speculation/negation cues.

3.5.1 Speculation Recognition
We refined an existing speculation detection mod-

ule in two ways for Task 3. First, we noted that
modal verbs (e.g., may) and epistemic adverbs (e.g.,
probably) rarely mark speculative contexts in the
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training corpus, demonstrating the lack of a stan-
dardized notion of speculation among various cor-
pora. For Task 3, we ignored lexical cues in these
classes completely for increased accuracy. Sec-
ondly, corpus analysis revealed a new syntactic pat-
tern for speculation recognition. This pattern in-
volves the class of verbs that we called active cogni-
tion verbs (e.g., examine, evaluate, analyze, study,
investigate). We search for a Theme dependency
pattern between one of these verbs and an event trig-
ger and mark the event as speculated, if such a pat-
tern exists. Nominalizations of these verbs are also
considered. In Example (7), the event triggered by
effects is speculated, since effects is the direct object
(therefore, Theme) of studied:

(7) We have studied the effects of prednisone
(PDN), ... on the production of cytokines (IL-2,
IL-6, TNF-alpha, IL-10) by peripheral T lym-
phocytes...

3.5.2 Negation Detection
Negation detection is similar to speculation detec-

tion. Several classes of negation cues have been de-
termined based on corpus analysis and the negation
module negates events if there is an appropriate de-
pendency between one of these cues and the event
triggers. The lexical cues and the dependencies that
are sought are given in Table 1.

Negation Cue Dependency
lack, absence prep of(Cue,Trigger)
unable, <not> able, fail xcomp(Cue,Trigger)
inability, failure infmod(Cue, Trigger)
no, not, cannot det(Trigger, Cue)

Table 1: Negation cues and the corresponding depen-
dencies (xcomp: clausal complement, infmod: infinitival
modifier, det: determiner)

Additionally, participation of event triggers
in dependencies of certain types is sufficient
for negating the event it triggers. Such depen-
dency types are neg (negation) and conj negcc
(negated coordination). A neg dependency ap-
plies to event triggers only, while conj negcc is
sought between event participants, as well as
event triggers. Therefore, in Example (8), an event
(Positive regulation(Trigger=transactivate,

Theme: GM-CSF, Cause=ELF1)) is negated, based
on the dependencies below:

(8) Exogenous ETS1, but not ELF1, can transacti-
vate GM-CSF, ..., in a PMA/ionomycin depen-
dent manner.
conj negcc(ETS1, ELF1)
nsubj(transactivate, ETS1)
dobj(transactivate, GM-CSF)

Finally, if none of the above applies and the word
preceding the event trigger or one of the event partic-
ipants is a negation cue (no, not, cannot), the event
is negated.

4 Results and Discussion

Our event extraction system had one of the best per-
formances in the shared task. With the approxi-
mate span matching/approximate recursive match-
ing evaluation criteria, in Task 1, we were ranked
third, while our speculation and negation detection
module performed best among the six participating
systems in Task 3. Not surprisingly, our system fa-
vors precision, typical of rule-based systems. Full
results are given in Table 2.

The results reported are at goodness score thresh-
old of .08. Increasing the threshold increases preci-
sion, while lowering recall. The threshold was de-
termined empirically.

Our results confirm the usefulness of dependency
relations as foundation for event extraction systems.
There is much room for improvement, particularly in
terms of recall, and we believe that incremental na-
ture of our system development accommodates such
improvements fairly easily.

Our view of event triggers (“once a trigger, always
a trigger”), while simplistic, provides a good start-
ing point by greatly reducing the number of trigger
candidates in a sentence and typed dependencies to
consider. However, it also leads to errors. One such
example is given in Example (9):

(9) We show that ..., and that LPS treatment en-
hances the oligomerization of TLR2.

where we identify the event Binding (Trig-
ger=oligomerization,Theme=TLR2). We consider
oligomerization a reliable trigger, since it occurs
twice in the training corpus, both times as event trig-
gers. However, in this instance, it does not trigger

124



Event Class Recall Precis. F-score
Localization 35.63 92.54 51.45
Binding 20.46 40.57 27.20
Gene expression 55.68 79.45 65.47
Transcription 15.33 60.00 24.42
Protein catabolism 64.29 56.25 60.00
Phosphorylation 69.63 95.92 80.69
EVT-TOTAL 43.10 73.47 54.33

Regulation 24.05 45.75 31.53
Positive regulation 28.79 50.45 36.66
Negative regulation 26.65 51.53 35.13
REG-TOTAL 27.47 49.89 35.43

Negation 14.98 50.75 23.13
Speculation 16.83 50.72 25.27
MOD-TOTAL 15.86 50.74 24.17

ALL-TOTAL 32.68 60.83 42.52

Table 2: Evaluation results

an event. This narrow view also leads to recall er-
rors, in which we do not recognize an event trigger
as such, simply because we have not encountered it
in the training corpus, or it does not have an appro-
priate part-of-speech tag. A more sophisticated trig-
ger learning approach could aid in better detecting
event triggers.

We dealt with some deficiencies of Stanford de-
pendency parsing through additional rules, as de-
scribed in Section 3.3. However, many depen-
dency errors are still generated, due to the com-
plexity of biological text. For instance, in Exam-
ple (10), there is a coordination construction be-
tween NF-kappaB nuclear translocation and tran-
scription of E-selectin and IL-8. However, this con-
struction is missed and an erroneous prep of de-
pendency is found, leading to two false positive
errors: Localization (Trigger=translocation,
Theme=E-selectin) and Localization (Trig-
ger=translocation, Theme=IL-8).

(10) ... leading to NF-kappaB nuclear translocation
and transcription of E-selectin and IL-8, which
results in ...
conj and(transcription, translocation)
prep of(translocation, E-selectin)

conj and(E-selectin, IL-8)

These errors can be corrected via other “corrective”
dependency paths; however, first, a closer examina-
tion of such error patterns is necessary.

In other instances, the required dependency is
completely missed by the parser, leading to recall
errors. For instance, in Example (11), we are un-
able to recognize two events (Regulation
(Trigger=regulation, Theme=4E-BP1) and
Regulation (Trigger=regulation, Theme=4E-
BP2)), due to lack of apposition dependencies
between repressors and 4E-BP1 or 4E-BP2:

(11) ... specific regulation of two repressors of
translation initiation, 4E-BP1 and 4E-BP2.
prep of(regulation,repressors)
prep of(repressors, initiation)
conj and(intiation, 4E-BP1)
conj and(initiation, 4E-BP2)

Typical of rule-base systems, we miss events ex-
pressed using less frequent patterns. Event partic-
ipants expressed as prepositional modifiers marked
with from is one such case. An example is given
below:

(12) Calcineurin activates transcription from the
GM-CSF promoter ...

In this case, the event Transcription (Trig-
ger=transcription, Theme=GM-CSF) is missed. It is
fairly easy to add a rule to address such occurrences.

We have not attempted to resolve anaphoric ex-
pressions for the shared task, which led to a fair
number of recall errors. In a similar vein, we ig-
nored events spanning multiple sentences. We ex-
pect that several studies addressing anaphora res-
olution in biomedical text (Castaño et al., 2002;
Gasperin and Briscoe, 2008) will inform our near
future efforts in this area.

Evaluation results regarding Task 3 may seem
poor at first; however, most of the errors concern
misidentified or missed base events. Thus, in this
section, we focus on errors specifically triggered by
speculation and negation module. In the develop-
ment corpus, we identified 39 speculation instances,
4 of which were errors due to speculation process-
ing. Of 95 annotated speculation instances, 7 were
missed due to deficiencies in speculation processing.
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Similarly, negation processing led to 5 false posi-
tives in 31 negation instances we identified and to 5
false negatives in 107 annotated negation instances.

We found that speculation false positive er-
rors are exclusively cases for which speculation
could be argued. For instance, in Example (13),
we recognize that appears to scopes over event
Negative regulation (Trigger=negatively
regulate, Theme=IL-2R), rendering it speculative.
However, it is not annotated as such. This is
further evidence for the difficulty of annotating such
phenomena correctly and consistently, since the
exact meaning is somewhat elusive.

(13) An unidentified Ets family protein binds to the
EBS overlapping the consensus GAS motif and
appears to negatively regulate the human IL-
2R alpha promoter.

Negation pattern that involves negation cues
(no,not,cannot) in the token preceding an event trig-
ger or participant, a pattern initially considered to
increase recall, caused most of negation false posi-
tive errors. An example is given in (14):

(14) The finding that HL-60/vinc/R cells respond to
TPA with induction of a monocytic phenotype,
but not c-jun expression, suggests that ...

Complex and less frequent patterns of expressing
speculation and negation were responsible for more
recall errors. Two such examples are given below:

(15) (a) These results ... and suggest a molecular
mechanism for the inhibition of TLR2 by
DN variants.

(b) Galectin-3 is ... and is expressed in many
leukocytes, with the notable exception of
B and T lymphocytes.

In (15a), speculation is detected; however, we are
unable to recognize that it scopes over the event
triggered by inhibition. In (15b), the prepositional
phrase, with the notable exception, is not considered
to indicate negation.

5 Conclusions and Future Work

We explored a rule-based approach to biological
event detection driven by typed dependency rela-
tions. This study marks our first foray into bio-event

extraction in a general way and, thus, we consider
the results very encouraging. In one area we investi-
gated before, speculation detection, our system per-
formed best and this confirms the portability and ex-
tensibility of our approach.

Modest recall figures point to areas of improve-
ment. We plan to address anaphora resolution and
multiple sentence spanning events in the near fu-
ture. Our naı̈ve approach to event triggers needs
refinement and we believe that sophisticated super-
vised machine learning techniques may be helpful.
In addition, biomedical lexical resources, includ-
ing UMLS SPECIALIST Lexicon (McCray et al.,
1994), may be useful in improving event trigger
detection. Finally, dependency relations based on
the Stanford Parser provided better performance in
our case, in contrast to general consensus that those
based on Charniak Parser (Charniak and Johnson,
2005) are superior, and this, too, deserves further in-
vestigation.
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