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Abstract

Word sense induction aims to discover differ-
ent senses of a word from a corpus by us-
ing unsupervised learning approaches. Once a
sense inventory is obtained for an ambiguous
word, word sense discrimination approaches
choose the best-fitting single sense for a given
context from the induced sense inventory.
However, there may not be a clear distinction
between one sense and another, although for
a context, more than one induced sense can
be suitable. Graded word sense method al-
lows for labeling a word in more than one
sense. In contrast to the most common ap-
proach which is to apply clustering or graph
partitioning on a representation of first or sec-
ond order co-occurrences of a word, we pro-
pose a system that creates a substitute vec-
tor for each target word from the most likely
substitutes suggested by a statistical language
model. Word samples are then taken accord-
ing to probabilities of these substitutes and the
results of the co-occurrence model are clus-
tered. This approach outperforms the other
systems on graded word sense induction task
in SemEval-2013.

1 Introduction

There exists several drawbacks of representing the
word senses with a fixed-list of definitions of a man-
ually constructed lexical database. There is no guar-
antee that they reflect the exact meaning of a tar-
get word in a given context since they usually con-
tain definitions that are too general (Véronis, 2004).
More so, lexical databases often include many rare

senses while missing corpus/domain-specific senses
(Pantel and Lin, 2004). The goal of Word Sense In-
duction (WSI) is to solve these problems by auto-
matically discovering the meanings of a target word
from a text, not pre-defined sense inventories. Word
Sense Discrimination (WSD) approaches determine
best-fitting sense among the meanings that are dis-
covered for an ambiguous word. However, (Erk
et al., 2009) suggested that annotators often gave
high ratings to more than one WordNet sense for the
same occurrence. They introduced a novel annota-
tion paradigm allowing that words have more than
one sense with a degree of applicability.

Unlike previous SemEval tasks in which systems
labeled a target word’s meaning with only one sense,
word sense induction task in SemEval-2013 relaxes
this by allowing a target word to have more than one
sense if applicable.

Word sense induction approaches can be catego-
rized into graph based models, bayesian, and vector-
space ones. In graph-based approaches, every con-
text word is represented as a vertex and if two con-
text words co-occur in one or more instances of a
target word, then two vertices are connected with
an edge. When the graph is obtained, one of the
graph clustering algorithm is employed. As a result,
different partitions indicate the different senses of a
target word (Véronis, 2004). Agirre et al. (2006) ex-
plored the use of two graph algorithms for unsuper-
vised induction and tagging of nominal word senses
based on corpora. Recently, Korkontzelos and Man-
andhar (2010) proposed a graph-based model which
achieved good results on word sense induction and
discrimination task in SemEval-2010.
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Brody and Lapata (2009) proposed a Bayesian
approach modeling the contexts of the ambiguous
word as samples from a multinomial distribution
over senses which are in turn characterized as dis-
tributions over words.

Vector-space models, on the other hand, typically
create context vector by using first or second or-
der co-occurrences. Once context vector has been
constructed, different clustering algorithms may be
applied. However, representing the context with
first or second order co-occurrences can be difficult
since there are plenty of parameters to be consid-
ered such as the order of occurrence, context win-
dow size, statistical significance of words in the con-
text window and so on. Instead of dealing with
these, we suggest representing the context with the
most likely substitutes determined by a statistical
language model. Statistical language models based
on large corpora has been examined in (Yuret, 2007;
Hawker, 2007; Yuret and Yatbaz, 2010) for unsuper-
vised word sense disambiguation and lexical substi-
tution. Moreover, the best results in unsupervised
part-of-speech induction achieved by using substi-
tute vectors (Yatbaz et al., 2012).

In this paper, we propose a system that represents
the context of each target word by using high prob-
ability substitutes according to a statistical language
model. These substitute words and their probabili-
ties are used to create word pairs (instance id - sub-
stitute word) to feed our co-occurrence model. The
output of the co-occurrence model is clustered by k-
means algorithm. Our systems perform well among
other submitted systems in SemEval-2013.

Rest of the paper is organized as follows. Sec-
tion 2 describes the provided datasets and evalu-
ation measures of the task. Section 3 gives de-
tails of our algorithm and is divided into five con-
tiguous subsections that correspond to each step of
our system. In Section 4 we present the differ-
ences between our three systems and their perfor-
mances. Finally, Section 5 summarizes our work in
this task. The code to replicate this work is available
at http://goo.gl/jPTZQ.

2 Data and Evaluation Methodology

The test data for the graded word sense induction
task in SemEval-2013 includes 50 terms containing

20 verbs, 20 nouns and 10 adjectives. There are a
total of 4664 test instances provided. All evalua-
tion was performed on test instances only. In ad-
dition, the organizers provided sense labeled trial
data which can be used for tuning. This trial data
is a redistribution of the Graded Sense and Usage
data set provided by Katrin Erk, Diana McCarthy,
and Nicholas Gaylord (Erk et al., 2009). It consists
of 8 terms; 3 verbs, 3 nouns, and 2 adjectives all
with moderate polysemy (4-7 senses). Each term
in trial data has 50 contexts, in total 400 instances
provided. Lastly, participants can use ukWaC1, a 2-
billion word web-gathered corpus, for sense induc-
tion. Furthermore, unlike in previous WSI tasks, or-
ganizers allow participants to use additional contexts
not found in the ukWaC under the condition that they
submit systems for both using only the ukWaC and
with their augmented corpora.

The gold-standard of test data was prepared using
WordNet 3.1 by 10 annotators. Since WSI systems
report their annotations in a different sense inven-
tory than WordNet 3.1, a mapping procedure should
be used first. The organizers use the sense mapping
procedure explained in (Jurgens, 2012). This proce-
dure has adopted the supervised evaluation setting
of past SemEval WSI Tasks, but the main differ-
ence is that the former takes into account applica-
bility weights for each sense which is a necessary
for graded word sense.

Evaluation can be divided into two categories: (1)
a traditional WSD task for Unsupervised WSD and
WSI systems, (2) a clustering comparison setting
that evaluates the similarity of the sense inventories
for WSI systems. WSD evaluation is made accord-
ing to three objectives:

• Their ability to detect which senses are appli-
cable (Jaccard Index is used)

• Their ability to rank the applicable senses ac-
cording to the level of applicability (Weighted
Kendall’s τ is used)

• Their ability to quantify the level of applicabil-
ity for each sense (Weighted Normalized Dis-
counted Cumulative Gain is used)

Clustering comparison is made by using:
1Available here: http://wacky.sslmit.unibo.it
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• Fuzzy Normalized Mutual Information: It cap-
tures the alignment of the two clusterings inde-
pendent of the cluster sizes and therefore serves
as an effective measure of the ability of an ap-
proach to accurately model rare senses.

• Fuzzy B-Cubed: It provides an item-based
evaluation that is sensitive to the cluster size
skew and effectively captures the expected per-
formance of the system on a dataset where the
cluster (i.e., sense) distribution would be equiv-
alent.

More details can be found on the task website.2

3 Algorithm

In this section, we explain our algorithm. First, we
describe data enrichment procedure then we will an-
swer how each instance’s substitute vector was con-
structed. In contrast to common practice which is
clustering the context directly, we first performed
word sampling on the substitute vectors and cre-
ated instance id - substitute word pairs as explained
in Subsection 3.3. These pairs were used in the
co-occurrence modeling step described in Subsec-
tion 3.4. Finally, we clustered these co-occurrence
modeling output with the k-means clustering algo-
rithm. It is worth noting that this pipeline is per-
formed on each target word separately.

SRILM (Stolcke, 2002) is employed on entire
ukWaC corpus for the 4-gram language model to
conduct all experiments.

3.1 Data Enrichment

Data enrichment aims to increase the number of in-
stances of target words. Our preliminary experi-
ments on the trial data showed that additional con-
texts increase the performance of our systems.

Assuming that our target word is book in noun
form. We randomly fetch 20,000 additional contexts
from ukWaC where our target word occurs with the
same part-of-speech tag. This implies that we skip
those sentences in which the word book functions as
a verb. These additional contexts are labeled with
unique numbers so that we can distinguish actual in-
stances in the test data. We follow this procedure for

2www.cs.york.ac.uk/semeval-2013/task13/

Substitute Probability
solve 0.305

complete 0.236
meet 0.096

overcome 0.026
counter 0.022
tackle 0.014

address 0.012
... ...
... ...

Table 1: The most likely substitutes for meet

every target word in the test data. In total, 1 mil-
lion additional instances were fetched from ukWac.
Hereafter we refer to this new dataset with as an ex-
panded dataset.

3.2 Substitute Vectors

Unlike other WSI methods which rely on the first or
the second order co-occurrences (Pedersen, 2010),
we represent the context of each target word instance
by finding the most likely substitutes suggested by
the 4-gram language model we built from ukWaC
corpus. The high probability substitutes reflect both
semantic and syntactic properties of the context as
seen in Table 1 for the following example:

And we need Your help to meet the chal-
lenge!

For every instance in our expanded dataset, we
use three tokens each on the left and the right side of
a target word as a context when estimating the prob-
abilities for potential lexical substitutes. This tight
window size might seem limited, however, tight con-
text windows give better scores for semantic simi-
larity, while larger context windows or second-order
context words are better for modeling general top-
ical relatedness (Sahlgren, 2006; Peirsman et al.,
2008).

Fastsubs (Yuret, 2012) was used for this process
and the top 100 most likely substitutes were used for
representing each instance since the rest of the sub-
stitutes had negligible probabilities. These top 100
probabilities were normalized to add up to 1.0 giv-
ing us a final substitute vector for a particular target
word’s instance. Note that the substitute vector is a
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Instance ID Substitute Word
meet1 complete
meet1 solve
meet1 solve
meet1 overcome

... ...

... ...
meet1 meet
meet1 complete
meet1 solve
meet1 solve

Table 2: Substitute word sampling for instance meet1

Figure 1: Co-Occcurrence Embedding Sphere for meet

function of the context only and is indifferent to the
target word.

At the end of this step, we had 1,004,466 sub-
stitute vectors. The next common step might be to
cluster these vectors either locally, which means ev-
ery target word will be clustered separately; or glob-
ally, which indicates all instances (approximately 1
million) will be clustered together. Both approaches
led us to lower scores than the presented method.
Therefore, instead of clustering substitute vectors di-
rectly, we relied on co-occurrence modeling.

3.3 Substitute Word Sampling
Before running S-CODE (Maron et al., 2010) to
model co-occurrence statistics, we needed to per-
form the substitute word sampling. For each target
word’s instance, we sample 100 substitutes from its
substitute vector. Assuming that our target word is
meet and its substitute vector is the one shown in

Instance ID Substitute Word
meet1 complete
meet1 solve

... ...
meet2 hold
meet2 visit

... ...
meet20100 assemble

... ...
meet20100 gather

Table 3: Substitute sampling for a target word meet.
Instance ID - Substitute word pairs

Table 1. We choose 100 substitutes from this in-
stance’s substitute vector by using individual proba-
bilities of substitutes. As seen in Table 2, those sub-
stitutes which have high probabilities dominate the
right column. Recall that Table 2 illustrates only one
instance (subscript denotes the instance number) for
the target word meet which has 20,000 and 100 in-
stances from the context enrichment procedure and
the test, respectively. We followed the same proce-
dure for every instance of each target word. Table 3
depicts instance id - substitute word pairs for the
target word meet rather than for only one instance
shown in Table 2.

3.4 Co-Occurrence Modeling

After sampling, we had approximately 20,000 in-
stance id - substitute word pairs. These pairs were
used to feed S-CODE. The premise is that words
with similar meanings will occur in similar contexts
(Harris, 1954), and at the end this procedure enables
us to put together words with similar meanings as
well as making the clustering procedure more accu-
rate. If two different instances have similar substi-
tute word pairs (i.e, similar contexts) then these two
word pairs attract each other and they will be located
closely on the unit sphere, otherwise they will repel
and eventually be far away from each other (see Fig-
ure 1).

3.5 Clustering

We used k-means clustering on S-CODE sphere.
Note that the procedures explained in the fore-
gone subsections were repeated for each target
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System JI WKT WNDCG

A
ll

In
st

an
ce

s
ai-ku 0.759 0.804 0.432

ai-ku(a1000) 0.759 0.794 0.612
ai-ku(r5-a1000) 0.760 0.800 0.541

MFS 0.381 0.655 0.337
All-Senses 0.757 0.745 0.660

All-Senses-freq-ranked 0.757 0.789 0.671
All-Senses-avg-ranked 0.757 0.806 0.706

Random-3 0.776 0.784 0.306
Random-n 0.795 0.747 0.301

Table 4: Supervised results on the trial set using median
gold-standard (JI: Jaccard Index FScore, WKT: Weighted
Kendall’s Tau FScore, WNDCG: Weighted Normalized
Discounted Cumulative Gain FScore)

word. More precisely, the substitute sampling, co-
occurrence modeling and clustering were performed
one by one for each target word.

We picked 22 as k value since the test set con-
tained words with 3 to 22 senses. After all word
pairs were labeled, we counted all class labels for
each instance in the test set. For example, if meet1’s
50 word pairs are labeled with c1 and 30 word pairs
are labeled with c2 and finally 20 word pairs are la-
beled with c3, then this particular instance would
have 50% sense1, 30% sense2 and 20% sense3.

4 Evaluation Results

In this section, we will discuss evaluation scores and
the characteristics of the test and the trial data.

All three AI-KU systems followed the same pro-
cedures described in Section 3. After clustering,
some basic post-processing operations were per-
formed for ai-ku(a1000) and ai-ku(r5-a1000). For
ai-ku(a1000), we added 1000 to all sense labels
which were obtained from the clustering procedure;
for ai-ku(r5-a1000), those sense labels occurred less
than 5 times in clustering were removed since we
considered them to be unreliable labels, afterwards
we added 1000 for all remaining sense labels.

Supervised Metrics: Table 5 shows the perfor-
mance of our systems on the test data using all
instances (verbs, nouns, adjectives) for all super-
vised measures and in comparison with the sys-
tems that performed best and worst, most frequent
sense (MFS), all senses equally weighted, all senses
average weighted, random-3, and random-n base-

System JI WKT WNDCG

A
ll

In
st

an
ce

s

ai-ku 0.197 0.620 0.387
ai-ku(a1000) 0.197 0.606 0.215

ai-ku(r5-a1000) 0.244 0.642 0.332
Submitted-Best 0.244 0.642 0.387

All-Best 0.552 0.787 0.499
All-Worst 0.149 0.465 0.215

MFS 0.552 0.560 0.412
All-Senses-eq-weighted 0.149 0.787 0.436
All-Senses-avg-ranked 0.187 0.613 0.499

Random-3 0.244 0.633 0.287
Random-n 0.290 0.638 0.286

Table 5: Supervised results on the test set. (Submitted-
Best indicates the best scores among all submitted sys-
tem. All-Best indicates the best scores among all sub-
mitted systems and baselines. JI: Jaccard Index FS-
core, WKT: Weighted Kendall’s Tau FScore, WNDCG:
Weighted Normalized Discounted Cumulative Gain FS-
core)

Trial Data Test Data
Number of Sense 4.97 1.19
Sense Perplexity 5.79 3.78

Table 6: Average number of senses and average sense
perplexity for trial and test data

lines. Bold numbers indicate that ai-ku achieved
best scores among all submitted systems. Our sys-
tems performed generally well for all three super-
vised measures and slightly better for all submit-
ted systems. On the other hand, baselines achieved
better scores than all participants. More precisely,
on sense detection objective, MFS baseline obtained
0.552 which is the top score, while the best submit-
ted system could reach only 0.244. Why is it the case
that MFS had one of the worst sense detection score
on trial data (see Table 4), but best on test data? Un-
like the trial data, test data largely consists of only
one sense instances, MFS usually gives correct an-
swer. Table 6 illustrates the characteristics of the
test and trial data. Instances annotated with multiple
sense had a very small fraction in the test data. In
fact, 517 instances in the test set were annotated with
two senses (11%) and only 25 were annotated with
three senses (0.5%). However, trial data provided
by the organizers had almost 5 senses per instance
on the average. A similar results can be observed
in All-Senses baselines. On sense ranking objec-
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System FScore FNMI FB-Cubed

A
ll

Si
ng

le
-s

en
se

In
st

an
ce

s
ai-ku 0.641 0.045 0.351

ai-ku(a1000) 0.601 0.023 0.288
ai-ku(r5-a1000) 0.628 0.026 0.421
Submitted-Best 0.641 0.045 0.441

All-Best 0.641 0.048 0.570
All-Worst 0.477 0.006 0.180

MFS 0.578 - -
SemCor-MFS 0.477 - -

One Sense 0.569 0.0 0.570
Random-3 0.555 0.010 0.359
Random-n 0.533 0.006 0.223

Table 7: Supervised and unsupervised results on the test
set using instances which have only one sense. Bold num-
bers indicate that ai-ku achieved the best submitted sys-
tem scores. (FScore: Supervised FScore, FNMI: Fuzzy
Normalized Mutual Information, FB-Cubed: Fuzzy B-
Cubed FScore)

tives, All-Sense-eq-weighted outperformed all other
systems. The reason is the same as the above. This
baseline ranks all senses equally and since most in-
stances had been annotated only one sense, the other
wrong senses were tied and placed at the second po-
sition in ranking. As a result, this baseline achieved
the highest score. Finally, for quantifying the level
of applicability for each sense, Weighted NDCG was
employed. ai-ku outperformed other submitted sys-
tems, but top score was achieved by all-sense-avg-
weighted baseline. Addition to these results, orga-
nizers provided scores for instances which have only
one sense. This setting contains 89% of the test data.
Table 7 shows supervised and unsupervised scores
for all single-sense instances. Our base system, ai-
ku, outperformed all other system and all baselines
for FScore. Moreover, it also achieved the second
best score (0.045) for Fuzzy NMI. Only one base-
line (one sense per instance) obtained slightly better
score (0.048) for this metric. For Fuzzy B-Cubed,
ai-ku(r5-a1000) obtained 0.421 which is the third
best score.

Clustering Comparison: This evaluation setting
aims to measure the similarity of the induced sense
inventories for WSI systems. Unlike supervised
metrics, it avoids potential loss of sense information
since this setting does not require any sense map-
ping procedure to convert induced senses to a Word-

System Fuzzy NMI Fuzzy B-Cubed

A
ll

In
st

an
ce

s

ai-ku 0.065 0.390
ai-ku(a1000) 0.035 0.320

ai-ku(r5-a1000) 0.039 0.451
Submitted-Best 0.065 0.483

All-Best 0.065 0.623
All-Worst 0.016 0.201
Random-2 0.028 0.474
Random-3 0.018 0.382
Random-n 0.016 0.245

Table 8: Scores on clustering measures (Fuzzy NMI:
Fuzzy Normalized Mutual Information, Fuzzy B-Cubed:
Fuzzy B-Cubed FScore)

All instances
ai-ku 7.72

ai-ku(a1000) 7.72
ai-ku(r5-a1000) 3.11

Table 9: Average number of senses for each ai-ku systems
on test data

Net sense. ai-ku performed best for Fuzzy NMI
among other systems included baselines. For Fuzzy
B-Cubed, ai-ku(r5a1000) outperformed random-3
and random-n baselines. Table 8 depicts the per-
formance of our systems, best and worst systems as
well as the random baselines.

The best scores for the graded word sense in-
duction task in SemEval-2013 are mostly achieved
by baselines in supervised setting. Major problem
is that there is huge sense differences between test
and trial data regarding to number of sense distribu-
tion. Participants that used trial data as for param-
eter tuning and picking the best algorithm achieved
lower scores than baselines since test data does not
show properties of trial data. Consequently, ai-ku
systems produce significantly more senses than the
gold-standard (see Table 9), and this mainly deterio-
rates our performance.

5 Conclusion

In this paper, we presented substitute vector repre-
sentation and co-occurrence modeling on WSI task.
Clustering substitute vectors directly gives lower
scores. Thus, taking samples from each target’s sub-
stitute vector, we obtained instance id - substitute
word pairs. These pairs were used by S-CODE. Fi-
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nally we run k-means on the S-CODE. Although our
systems were highly ranked among the other submit-
ted systems, no system showed better performance
than the top baselines for all metrics. One explana-
tion is that trial data does not reflect the characteris-
tics of test data according to their number of sense
distributions. Systems used trial data biased to re-
turn more than one sense for each instance since av-
erage number of sense is almost five in trial data. In
addition, baselines (except random ones) know true
sense distribution in the test data beforehand which
make them harder to beat.
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and Aitor Soroa. 2006. Two graph-based algorithms
for state-of-the-art WSD. In Proceedings of the 2006
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 585-593.

Samuel Brody and Mirella Lapata. 2009. Bayesian Word
Sense Induction. In Proceedings of the 12th Con-
ference of the European Chapter of the ACL (EACL
2009), pages 103-111, Athens, Greece.

Katrin Erk, Diana McCarthy, Nicholas Gaylord. 2009.
Investigations on Word Senses and Word Usages, In
Proceedings of ACL-09 Singapore.

Zellig S. Harris. 2012. Distributional structure. Word,
Vol. 10, pages 146-162.

Tobias Hawker. 2007. USYD: WSD and lexical substi-
tution using the Web 1T corpus In Proceedings of the
Fourth International Workshop on Semantic Evalua-
tions (SemEval-2007), pages 207214, Prague, Czech
Republic, June. Association for Computational Lin-
guistics.

Ioannis Korkontzelos and Suresh Manandhar. 2010.
UoY: Graphs of Unambiguous Vertices for Word
Sense Induction and Disambiguation. In Proceedings
of the 5th International Workshop on Semantic Evalu-
ation. Uppsala, Sweden.

David Jurgens. 2012. An Evaluation of Graded Sense
Disambiguation using Word Sense Induction. In Se-
mEval ’12 Proceedings of the First Joint Conference
on Lexical and Computational Semantics. pages 189-
198.

Yariv Maron, Michael Lamar, and Elie Bienenstock.
2012. Sphere embedding: An application to part-of-
speech induction. In J. Lafferty, C. K. I. Williams, J.
Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, In
Advances in Neural Information Processing Systems
23, pages 1567-1575.

Patrick Pantel and Dekang Lin. 2002. Discovering Word
Senses from Text. In Proceedings of the 8th ACM
SIGKDD Conference, pages 613-619, New York, NY,
USA. ACM.

Ted Pedersen. 2010. Duluth-WSI: SenseClusters Ap-
plied to the Sense Induction Task of SemEval-2. In
Proceedings of the 5th International Workshop on Se-
mantic Evaluation. pages 363-366, Uppsala, Sweden.

Yves Peirsman, Kris Heylen and Dirk Geeraerts. 2008.
Size Matters. Tight and Loose Context Definitions in
English Word Space Models. In Proceedings of the
ESSLLI Workshop on Distributional Lexical Seman-
tics, Hamburg, Germany.

Magnus Sahlgren. 2002. The Word-Space Model: Us-
ing distributional analysis to represent syntagmatic
and paradigmatic relations between words in high-
dimensional vector spaces. Ph.D. dissertation, De-
partment of Linguistics, Stockholm University.

Andreas Stolcke. 2002. SRILM - An Extensible Lan-
guage Modeling Toolkit. Proceedings International
Conference on Spoken Language Processing, pages
257286.
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