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Abstract 

Code-mixing is a common phenomenon in bilingual societies. It refers to the 
intra-sentential switching of two different languages in a spoken utterance. This 
paper presents the first study on automatic recognition of Cantonese-English 
code-mixing speech, which is common in Hong Kong. This study starts with the 
design and compilation of code-mixing speech and text corpora. The problems of 
acoustic modeling, language modeling, and language boundary detection are  
investigated. Subsequently, a large-vocabulary code-mixing speech recognition 
system is developed based on a two-pass decoding algorithm. For acoustic 
modeling, it is shown that cross-lingual acoustic models are more appropriate than 
language-dependent models. The language models being used are character 
tri-grams, in which the embedded English words are grouped into a small number 
of classes. Language boundary detection is done either by exploiting the 
phonological and lexical differences between the two languages or is done based on 
the result of cross-lingual speech recognition. The language boundary information 
is used to re-score the hypothesized syllables or words in the decoding process. The 
proposed code-mixing speech recognition system attains the accuracies of 56.4% 
and 53.0% for the Cantonese syllables and English words in code-mixing 
utterances. 

Keywords: Automatic Speech Recognition, Code-mixing, Acoustic Modeling, 
Language Modeling 

1. Introduction 

Code-switching and code-mixing are common phenomena in bilingual societies. According to 
John Gumperz (Gumperz, 1982), the definition of code-switching is “the juxtaposition within 
the same speech exchange of passages of speech belonging to two different grammatical 
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systems or sub-systems”. Different combinations of languages are found in code-switching, 
for examples, Spanish-English in United States, German-Italian and French-Italian in 
Switzerland, and Hebrew-English in Israel (Auer, 1998). In Taiwan, code-switching between 
Chinese dialects, namely Mandarin and Taiwanese, has become common in recent years 
(Chen, 2004). Hong Kong is an international city where many people, especially the younger 
generation, are Cantonese and English bilinguals. English words are frequently embedded into 
spoken Cantonese. The switching of language tends to be intra-sentential, and it rarely 
involves linguistic units above the clause level. Hence, the term code-mixing is usually 
preferred (Li, 2000). In this case, Cantonese is the primary language, also known as the matrix 
language, and English is the secondary language, usually referred to as the embedded 
language (Halmari, 1997). 

Automatic speech recognition (ASR) is one of the key technologies in spoken language 
processing. An ASR system converts an input speech waveform into a sequence of words. 
Recently, ASR for multilingual applications has attracted great interest (Schultz & Kirchhoff, 
2006). In state-of-the-art ASR systems, the input speech is assumed to contain only one 
language and the language identity is given. These systems are not able to handle code-mixing 
speech, which differs significantly from monolingual speech spoken by native speakers. This 
calls for special consideration in the design of acoustic models, lexical and language models, 
and in the decoding algorithm. 

There have been two different approaches to code-switching or code-mixing speech 
recognition (Lyu et al., 2006; Chan et al., 2006). The first approach involves a language 
boundary detection (LBD) algorithm that divides the input utterance into 
language-homogeneous segments. The language identity of each segment is determined, and 
the respective monolingual speech recognizer is applied. LBD for mixed-language utterances 
was studied by Wu et al. (2006) and Chan et al. (2004). Language-specific phonological and 
acoustic properties were used as the primary cues to identify the languages. The second 
approach aims to develop a cross-lingual speech recognition system, which can handle 
multiple languages in a single utterance. The acoustic models, language models, and 
pronunciation dictionary are designed to be multi-lingual and cover all languages concerned. 
In Lyu et al. (2006), automatic recognition of Mandarin-Taiwanese code-switching speech 
was investigated. It was found that Mandarin and Taiwanese, both of which are Chinese 
dialects, share a large percentage of lexicon items. Their grammar was also assumed to be 
similar. A one-pass recognition algorithm was developed using a character-based search net. It 
was shown that the one-pass approach outperforms LBD-based multi-pass approaches. In You 
et al. (2004), a mixed-lingual keyword spotting system was developed for auto-attendant 
applications. The keywords to be detected could be in either English or Chinese. 

This paper presents a study on automatic speech recognition of Cantonese-English 
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code-mixing speech. Part of the work was reported in Chan et al. (2006). Our study covers all 
components of an ASR system, including acoustic models, language models, pronunciation 
dictionary, and search algorithm. Different approaches to LBD are also investigated. By 
understanding the linguistic properties of monolingual Cantonese and English, as well as 
code-mixing speech, the major difficulties in code-mixing speech recognition are revealed and 
possible solutions are suggested. We propose a two-pass recognition system, in which the 
acoustic and linguistic knowledge sources are integrated with language boundary information. 
Simulation experiments are carried out to evaluate the performance of the whole system as 
well as individual system components. 

2. Difficulties in Code-mixing Speech Recognition 

2.1 Linguistic Properties of Cantonese and English 
Cantonese is a Chinese dialect. It is spoken by tens of millions of people in the provinces of 
Guangdong, Guangxi, Hong Kong, and Macau. A Chinese word in its written form is 
composed of a sequence of characters. In Cantonese, each Chinese character is pronounced as 
a monosyllable carrying a specific lexical tone (Ching et al., 2006). English is one of the most 
popular languages in the world. An English word is written as a sequence of letters. In spoken 
form, each word may consist of several syllables, some of which are designated to be stressed. 
Table 1 shows a pair of example words in Cantonese and English. 

Table 1. Examples of Cantonese and English words in written and spoken format. 
Written (orthographic transcription) Spoken (phonetic transcription) 

產生 /ts a n/ /s  / 

produce /p r ´ »d j u˘ s/ 

Syllables can be divided into smaller units, namely consonants (C) and vowels (V). 
Cantonese syllables take the structures of V, CV, CVC, or VC (Ching et al., 1994). If tonal 
difference is not considered, the number of distinct Cantonese syllables is around 600 (Ching 
et al., 2006). The syllable structure in English is more complicated than that in Cantonese. 
Although many English syllables share the same canonical forms as given above, there also 
exist combinations like CCV, VCC, CCCV, and CCCVCC (Wester, 2003), which are not 
found in Cantonese. 

There are 22 consonants and 22 vowels (including diphthongs) in Cantonese, and 24 
consonants and 14 vowels in American English (Ching et al., 1994; Ladefoged, 1999). Table 2 
lists the IPA (International Phonetic Alphabet) symbols of these phonemes. Some of the 
phonemes in the two languages are labeled with the same IPA symbols by phoneticians, 
meaning that they are phonetically very close. Some of the other phonemes are also 
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considered to be very similar although they are labeled differently in the two languages, e.g., 
/au/ in Cantonese and /aU/ in English. 

Table 2. Phonemes of Cantonese and English. The phonemes that are labeled with 
the same IPA symbols in both Cantonese and English are listed first and 
boldfaced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Cantonese phonemes 
IPA symbol Example 

p [p a] (爸)
m [m a] (媽)
f [f a] (花) 
t [t a] (打) 
tS [tS y] (朱) 
n [n a] (拿) 
s [s a] (沙) 
S [S y] (書) 
l [l a] (啦) 
j [j åu] (憂)
k [k a] (加) 
N [pH a N] (烹)
w [w a] 蛙 
h [h a] (蝦) 
I [s I k] (色)
i [s i] (絲) 
E [s E] (借) 
U [s U N] (鬆)
u [f u] (夫) 
pH [pH a] (扒)
tH [tH a] (他) 
ts [ts i] (之) 
tsH [tsH i] (痴)
tSH [tSH y] (處)
kH [kH a] (卡) 
kW [kW a] (瓜)
kWH [kWH a] (誇)
y [S y] (書) 
ø [h ø] (靴)
a [s a] (沙) 
å [s å p] (濕)
P [s P t] (恤)
ç [s ç] (梳) 
ei [h ei] (稀)
Eu [t Eu] (投)
ai [w ai] (威)
Py [s Py] (衰)
åi [s åi] (西)
ui [f ui] (灰)
iu [s iu] (燒) 
åu [s åu] (收)
au [s au] (筲)
çi [s çi] (鰓) 
ou [s ou] (鬚)

 

English phonemes 
IPA symbol Example 

p [p aI]    (pie) 
m [m aI]    (my) 
f [f l aI]    (fly) 
t [t aI]    (tie) 
tS [tS I n]    (Chin) 
n [n E t]    (net) 
s [s Q t]    (sat) 
S [S aI]    (shy) 
l [l aI]    (lie) 
j [j u]    (you) 
k [k aI t]    (kite) 
N [h Q N]    (hang) 
w [w aI]    (why) 
h [h aI]    (high) 
I [b I d]    (bid) 
i [b i t]    (beat) 
E [b E d]    (bed) 
U [g U d]    (good) 
u [b u t]    (boot) 
b [b aI]   (buy) 
v [v aI]    (vie) 
T [T I N]    (thing) 
D [D e I]    (they) 
d [d aI]    (die) 
z [z u]    (zoo) 
® [® E n t]    (rent) 

dZ [p e I dZ] (page) 
Z [Q Z ‘]    (azure) 
g [g aI]    (guy) 
e [b e I t]    (bait) 
Q [b Q d]    (bad) 
‘ [b ‘ d]    (bird) 
o [b o t]    (boat) 
A [p A d]    (pod) 
√ [b √ d]    (bud) 
aU [k aU]    (cow) 
aI [b aI]    (buy) 
çI [b çI]    (boy) 
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In this section, we use IPA symbols to facilitate an intuitive comparison between 
Cantonese and English. Language-specific phonemic symbols have been commonly used in 
monolingual ASR research, for examples, Pinyin for Mandarin, Jyut-Ping for Cantonese 
(LSHK, 1997), and ARPABET for American English (Shoup, 1980). In Section 4, where 
phoneme-based acoustic modeling is discussed, we will use Jyut-Ping and ARPABET for 
monolingual Cantonese and English respectively, and a combination of them for code-mixing 
speech. 

2.2 Properties of Cantonese-English Code-mixing Speech 
Table 3 gives an example of Cantonese-English code-mixing sentence spoken in Hong Kong. 
It contains an English segment with one word. In this case, the English word is used as a 
substitute for its Chinese equivalent. The grammatical structure is totally that of Cantonese. In 
our application, the mother tongue of the speaker is Cantonese, i.e., the matrix language. It is 
inevitable that the embedded English words carry Cantonese accent to certain extent. In many 
cases, the syllable structure of an English word changes to follow the structure of legitimate 
Cantonese syllables (Li, 1996). Such changes usually involve phone insertions or deletions. 
For example, the second consonant in a CCVC syllable of English may be softened, e.g., the 
word “plan” in the example of Table 3 is pronounced as /p æ n/ instead of /p l æ n/ by many 
Cantonese speakers. A monosyllabic word with the CVCC structure may become disyllabic by 
inserting a vowel at the end, e.g., /f Q n z/ (“fans”) becoming /f Q n s I/. It is also noted that 
the final stop consonant in an English word tends to be softened or dropped, e.g., /t E s t/ 
(“test”) becoming /t E s/. This is related to the fact that the stop coda of a Cantonese syllable 
is unreleased (Ching et al., 2006). In addition to phone insertion and deletion, there also exist 
phone changes in Cantonese-accented English. That is, an English phoneme that is not found 
in Cantonese is replaced by a Cantonese phoneme that people consider to sound similar. For 
example, /P r i/ (“three”) becomes /f r i/ in Cantonese-accented English. Cantonese speakers 
in Hong Kong sometimes create a Cantonese pronunciation for an English word. For example, 
the word “file” (/f aI l/) is transliterated as /f aI l o/ (快佬 in written form). It is not a 
straightforward decision whether such a word should be treated as English or Cantonese. This 
is known as “lexical borrowing” (Chan, 1992). 

In conclusion, English words in a code-mixing utterance must not be treated as being the 
same as those in a monolingual utterance from a native English speaker. For the design of 
ASR systems, special considerations are needed in acoustic modeling and lexicon 
construction. 

Code-mixing occurs less frequently in read-style speech than in casual conversational 
speech. There exist many pronunciation variations in casual Cantonese speech, especially 
when the speaking rate is fast. Speakers may not follow strictly the pronunciations as specified 
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in a standard dictionary. In the example of Table 3, the initial consonant /n/ of the first 
syllable is commonly pronounced as /l/ by the younger generation. Syllable fusion is often 
seen in fast speech, i.e., the initial consonant of the second syllable of a disyllabic word tends 
to be omitted or changed (Kam, 2003; Wong, 2004). 

Table 3. An example of a Cantonese-English code-mixing sentence 
Code-mixing speech 

  你哋       plan           咗       行程       未 ? 

You (plural)   plan       already    schedule     or not 
Transcription according to standard pronunciation dictionary 

/nei/ /tei/       /p l Q n/       /ts ç/       /h åN/ /ts I N/    /m ei/ 

Transcription according to typical pronunciation in code-mixing speech 

/lei/ /tei/       /p Q n/          /ts ç/       /h åN/ /ts I N/     /m ei/ 

English translation 
Have you planned your schedule already? 

2.3 Problems and Difficulties in Code-mixing Speech Recognition 
Large-vocabulary continuous speech recognition (LVCSR) systems deal with fluently spoken 
speech with a vocabulary of thousands of words or more (Gauvain & Lamel, 2000). As shown 
in Figure 1, the key components of a state-of-the-art LVCSR system are acoustic models, 
pronunciation dictionary, and language models (Huang et al., 2001). The acoustic models are 
a set of hidden Markov models (HMMs) that characterize the statistical variation of the input 
speech features. Each HMM represents a specific sub-word unit such as a phoneme. The 
pronunciation dictionary and language models are used to define and constrain the ways in 
which the sub-word units can be concatenated to form words and sentences. 

 
Figure 1. The flow diagram of an LVCSR system 
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For code-mixing speech recognition, the input utterance contains both Cantonese and 
English. Thus, the acoustic models are expected to cover all possible phonemes in the two 
languages. There are two possible approaches: (1) monolingual modeling with two separate 
sets of language-specific models; (2) cross-lingual modeling with some of the phoneme 
models shared between the two languages. Monolingual modeling has the advantage of 
preserving the language-specific characteristics and is most effective for monolingual speech 
from native speakers (Schultz & Waibel, 1998). In code-mixing speech where the English 
words are Cantonese-accented, an English phoneme tends to resemble or even become 
identical to a Cantonese counterpart. In this case, we may treat them as the same phoneme and 
establish a cross-lingual model to represent it. As shown in Table 2, Cantonese and English 
have a number of phonemes that are phonetically identical or similar to each other. The degree 
of similarity varies. In principle, cross-lingual modeling can be applied to those highly similar 
phonemes, while language-specific models would be more appropriate if the phonetic 
variation is relatively large. In Section 4, we are going to compare the effectiveness of 
cross-lingual and mono-lingual acoustic modeling and try to establish an optimal phoneme set 
for code-mixing speech recognition. 

The pronunciation dictionary for code-mixing speech recognition is a mixture of English 
and Cantonese words. Each word may correspond to multiple pronunciations, which are 
represented in the form of phoneme sequences. Due to the effect of the Cantonese accent, the 
English words in code-mixing speech are subject to severe pronunciation variation as 
compared to those in standard English by native speakers. It is essential to reflect such 
variation in the pronunciation dictionary. On the other hand, as discussed in Section 2.2, the 
common pronunciation variations in spoken Cantonese should also be included. 

In our application, the most common type of code-mixing is where one or more 
Cantonese words in the utterance being replaced by the English equivalent (Chan, 1992). The 
grammatical structure of code-mixing sentences is based largely on that of monolingual 
Cantonese. Word n-gram is by far the most commonly used technique for language modeling 
in LVCSR. To train a set of good n-gram models, a large number of spoken materials in 
computer-processable text format are needed. This presents a great challenge to our research 
since it is difficult in practice to find such materials for code-mixing speech. For the training 
of acoustic models, we need a large amount of code-mixing speech data. Development of 
speech and text corpora is therefore an important part of our work. 

3. Development of Code-mixing Speech Corpus 

In this section, the design, collection, and annotation of a Cantonese-English code-mixing 
speech corpus, named CUMIX, are described (Chan et al., 2005). CUMIX is intended mainly 
for acoustic modeling for large-vocabulary speech recognition. 
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3.1 Corpus Design 
There are three different types of utterances in CUMIX: 

1. Cantonese-English code-mixing utterances (CM) 

2. Monolingual Cantonese utterances (MC) 

3. Monolingual English words and phrases (ME) 

The CM utterances represent the typical code-mixing speech being dealt with in our 
application. There are practical difficulties in designing the content of code-mixing sentences. 
This is because spoken Cantonese is considered as a colloquial language that mainstream 
written publications do not use. Although the grammar of spoken Cantonese is similar to that 
of standard written Chinese, the lexical preference is quite different. An example pair of 
spoken Cantonese and written Cantonese sentences is shown in Table 4. Spoken Cantonese 
rarely appears in published text materials. Thus, text materials that involve code-mixing of 
spoken Cantonese and English are very limited. 

Table 4. Comparison of spoken Cantonese and standard Chinese 
Written Chinese: 你 吃過 午飯 了嗎? 

Spoken Cantonese: 你 食咗 晏 未? 

English translation (word by word): You eaten lunch or not? 

English translation (whole sentence): Have you had lunch? 

The design of CM sentences in CUMIX was based on a few local newspapers and online 
resources, including newsgroups and online diaries. We also consulted previous linguistic 
studies on Cantonese-English code-mixing. In Chan (1992), about 600 code-mixing sentences 
were analyzed. In 80% of the cases, the English segment contains a single word. The 
percentage distribution of nouns, verbs, and adjectives/adverbs are 43%, 24%, and 13%, 
respectively. There are very few cases involving prepositions and conjunctions. We try to 
follow these distributions in our corpus design. 

A total of 3167 distinct code-mixing sentences were manually designed. Each sentence 
has exactly one English segment, which may contain one or more words. There are a total of 
1097 distinct English segments. Each of them may appear more than once in the corpus, and if 
it does, the Cantonese contents of the respective sentences are different. The selected English 
words/phrases are commonly found in code-mixing speech and cover different part-of-speech 
categories. 

The monolingual Cantonese sentences (MC) are identical to the CM sentences except 
that the English segments are replaced by the corresponding Cantonese words. The number of 
distinct MC sentences is smaller than that of CM ones because some of the English segments 
do not have Cantonese equivalents. Table 5 gives an example pair of CM and MC sentences. 
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In this example, the code-switched word “bonus” is replaced by the Cantonese word “花紅”. 

Table 5. A CM sentence and the corresponding MC sentence 

CM sentence: 我覺得今年有 bonus  嘅機會好渺茫。 

MC sentence: 我覺得今年有  花紅  嘅機會好渺茫。 

English translation: I believe that it is very unlikely to have a bonus this year. 

We also need English speech data for acoustic modeling of the English segments. 
Existing English databases like TIMIT and WSJ (Garofolo et al., 1993; Lamel et al., 1986; 
Paul & Baker, 1992) do not serve the purpose as they cannot reflect the phonetic and 
phonological properties of Cantonese-accented English. The amount of English speech data in 
the CM utterances is very limited. Thus, monolingual English utterances (ME) were also 
included as part of CUMIX to enrich the training data for the English acoustic models. The 
ME utterances contain English words and phrases, numbers and letters, which are most 
commonly used in Cantonese-English code-mixing speech. 

3.2 Data Collection & Verification 
The speech data in CUMIX were recorded from 34 male and 40 female native Cantonese 
speakers. Most of the speakers were university students. The average age was 22. The 
recording was carried out in a quiet room using a high-quality headset microphone. Each 
speaker was given a list of pre-selected sentences or phrases. He/she was requested to read 
each sentence fluently and naturally at a normal speaking rate. The speaker was also advised 
to adopt the pronunciations that they use in daily life. 

Each recorded utterance was checked manually. The instants of language switching were 
marked. For those containing undesirable content or recording artifacts, the speakers were 
requested to record them again or the utterances were simply discarded. Each verified 
utterance is accompanied by an orthographic transcription, which is a sequence of Chinese 
characters with English words inserted in-between. In addition, the Cantonese pronunciations 
of the characters were also provided in the form of Jyut-Ping symbols. 

3.3 Corpus Organization 
Based on the usage, the utterances were organized into two parts, namely training data and test 
data. The training data set includes utterances from 20 male and 20 female speakers. Each 
speaker has 200 CM utterances and 100 ME utterances. Test data are intended for 
performance evaluation of the code-mixing speech recognition system and language boundary 
detection algorithms. There are 14 male and 20 female speakers in the test data. Each of them 
has 120 CM utterances and 90 MC utterances. Among the 34 test speakers, 5 males and 5 
females were reserved as development data, which is intended for the tuning of various 
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weighting parameters and thresholds in the system design. Table 6 gives a summary of the 
CUMIX corpus. 

Table 6. A summary of CUMIX 

  Training data Test data 
 20 male, 20 female 14 male, 20 female 

CM 

Duration: 7.5 hours 4.25 hours 
Duration of English segments: 1.13 hours 0.57 hours 
Total no. of utterances: 8000 3740 
No. of unique sentences: 2087 2256 
No. of unique English segments: 1047 1069 

MC 
Duration: 

 
2.75 hours 

Total no. of utterances: 3060 
No. of unique sentences: 1742 

ME 
Duration: 1.5 hours 

 Total no. of utterances: 4000 
No. of unique sentences: 1000 

4. Acoustic Modeling 

This part of research aims at designing an appropriate phoneme inventory for acoustic 
modeling of Cantonese-English code-mixing speech. It is expected that some of the phoneme 
models are language-specific and the others are shared between Cantonese and English. 
Speech recognition experiments are carried out to evaluate the performances of three different 
sets of acoustic models in terms of syllable and word accuracy. In addition to CUMIX, two 
large-scale monolingual speech databases, namely TIMIT and CUSENT, are involved. 
CUSENT is a read-speech database developed for Cantonese LVCSR applications (Lee et al., 
2002). TIMIT is a phonetically balanced speech database of American English with hundreds 
of speakers (Garofolo et al., 1993). 

Table 7 explains the three sets of acoustic models, which are denoted by ML_A, ML_B, 
and CL, respectively. ML_A and ML_B are language-dependent phoneme models, in which 
Cantonese and English phonemes are separated despite the fact that some of them are 
phonetically similar. There are 56 Cantonese phonemes as listed in Table 8. They are adequate 
to compose all legitimate syllables of Cantonese. The English phoneme set has 39 elements as 
shown in Table 9. This phoneme set has been the most widely used in previous research (Lee 
& Hon, 1989). The difference between ML_A and ML_B is that they are trained with different 
training data as shown in Table 7. 
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CL is a set of cross-lingual models, designed to accommodate both Cantonese and 
English. As the matrix language, all Cantonese phonemes are included in the cross-lingual 
phoneme set. The English phonemes are divided into two parts. Phonemes that are unique to 
English are modeled separately, while the others are treated as Cantonese phonemes. In our 
work, the merging between English and Cantonese phonemes is based largely on phonetic 
knowledge (Chan, 2005). Due to the Cantonese accents, a number of English phonemes in the 
code-mixing speech are found to be sharable with Cantonese. It is also practically preferable 
to reduce the total number of phonemes as far as possible to facilitate effective utilization of 
training data. As a result, a total of 70 phonemes are selected for CL (Chan et al., 2006). They 
are listed in Table 10. In addition to the 56 Cantonese phonemes in Table 8, a number of 
Cantonese diphthongs that have English equivalents are included. There are only 7 
English-specific phonemes, while the others are mapped to some Cantonese equivalents. 

Table 7. Different acoustic models being evaluated 
Model Phoneme inventory Training data 

ML_A 
39 English phonemes 
56 Cantonese phonemes 

English: 
Cantonese: 

TIMIT 
CUSENT 

ML_B 
39 English phonemes 
56 Cantonese phonemes 

English: 
Cantonese: 

CUMIX 
CUSENT & CUMIX 

CL 70 Cross-lingual phonemes 
English: 
Cantonese: 

CUMIX 
CUSENT & CUMIX 

Table 8. 56 Cantonese phonemes for monolingual modeling (ML_A & ML_B). 
Jyut-Ping symbols are used. “f-“ represents a syllable-initial consonant 
and “-m” represents a syllable coda. “k-/kw-” means that the two initial 
consonants are merged as one. “s-(yu)” represents a variant of “s-” 
when followed by the vowel “yu”. 

Consonant f-, h-, k-/kw-, g-/gw-, l-/n-, m, m-, -m, -n, ng, ng-, -ng, null, b-, p-, s-, 
s-(yu), z-, z-(yu), c-, c-(yu), d-, t-, w-, j- 

Vowel a, aa, o, e, eo, i, i(ng), oe, u, u(ng), yu 
Vowel-stop ap, at, ak, aap, aat, aak, ep, et, ek, ut, uk, yut, ip, it, ik, op, ot, ok, eot, oek 

Table 9. English phonemes for monolingual modeling (ML_A & ML_B). 
APRABET symbols are used to label the phonemes. 

Consonant dh, th, f, v, w, z, zh, s, sh, t, d, b, p, ch, g, h, jh, k, l, m, n, ng, y, r 
Vowel aa, ae, ah, ao, aw, ay, eh, er, ey, ih, iy, ow, oy, uh, uw 
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Table 10. Phonemes for cross-lingual modeling (CL). English-specific phonemes 
start with the prefix “E_” and are labeled with ARPABET symbols. 

Consonant (30) 
f-, h-, k-/kw-, g-/gw-, l-/n-, m, m-, -m, -n, ng, ng-, -ng, null, b-, p-, s-, 
s-(yu), z-, z-(yu), c-, c-(yu), d-, t-, w-, j-, 
E_t, E_d, E_k, E_r, E_z 

Vowel/diphthong (20)
a, aa, o, e, eo, i, i(ng), oe, u, u(ng), yu, iu, aai, ai, au, ou, oi, ei, 
E_ah, E_el 

Vowel-stop (20) ap, at, ak, aap, aat, aak, ep, et, ek, ut, uk, yut, ip, it, ik, op, ot, ok, eot, oek 

The English phoneme models in ML_A are trained with TIMIT, and the Cantonese 
models are trained with CUSENT. The English words in TIMIT sentences are transcribed into 
phoneme sequences based on the CMU pronunciation dictionary (CMU). The Cantonese 
syllables in CUSENT utterances are transcribed into phoneme sequences using a standard 
Cantonese pronunciation dictionary (LSHK, 1997). All training data are assumed to follow the 
standard pronunciations. 

For ML_B, the English phoneme models are trained with the code-switched English 
segments in the CM and ME utterances of CUMIX. The Cantonese phoneme models are 
trained with CUSENT and the Cantonese part of CUMIX. Moreover, the pronunciation 
dictionaries used for transcribing the utterances include not only standard English but also 
Cantonese-accented English and common pronunciation variants of Cantonese syllables. Thus, 
there may exist multiple pronunciations for a lexical entry. For each of the possible 
pronunciations, the acoustic likelihood of the word or syllable segment is computed. The 
pronunciation with the highest likelihood is adopted for the training of ML_B. 

For CL, we use the same training data as for ML_B. We also use the same transcriptions 
as determined for ML_B except that the language-dependent phoneme symbols are converted 
into the cross-lingual phoneme symbols in Table 10. 

The effectiveness of ML_A, ML_B, and CL are evaluated by syllable/word recognition 
experiments. The test data include the CM and the MC test utterances of CUMIX. The 
acoustic feature vector has 39 components: 13 MFCC and their first and second-order time 
derivatives. All phoneme models are context-dependent triphone HMMs. Each model consists 
of three emitting states, each of which is represented by a mixture of Gaussian density 
functions. States in models are clustered and tied using a decision-tree based technique with 
pre-set phonetic questions. ML_A and ML_B use 16 Gaussian components per state, while CL 
has 32 Gaussian components. The grammar network used for recognizing CM utterances is 
illustrated in Figure 2. For MC utterances, the recognition network is simplified into a syllable 
loop. 
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Figure 2. Grammar network for syllable/word recognition of code-mixing speech 

The recognition performance is measured in terms of syllable accuracy for Cantonese 
and word accuracy for English. The test results are given in Figure 3. For code-switched 
English words, ML_A attains a very low accuracy of 18.9%. This confirms that 
Cantonese-accented English is very different from the native American English found in 
TIMIT. ML_B improves greatly in recognizing English words due to better matched training. 
Nevertheless, the accuracy of 40.5% is still on the low side because of the limited amount of 
training data and the language-dependent nature of the models. The English words in CUMIX 
carry Cantonese accents, such that some of the English phoneme models are very close to 
certain Cantonese phoneme models. In other words, similar acoustic features are captured by 
two different models. Hence, the confusion between English words and Cantonese syllables 
tends to increase. The Cantonese syllables are easily misrecognized as English words, and 
vice-versa. This also explains why the performance of ML_B in recognizing Cantonese 
syllables declines. 
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Figure 3. Syllable/word accuracy of the three acoustic models 
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For Cantonese speech in the code-mixing utterances (CM), the recognition accuracies 
attained by ML_A and ML_B are 60.9% and 45.9% respectively. The poor performance of 
ML_B is related to the use of language-dependent models as discussed above. The 
performance difference between ML_A and ML_B for monolingual Cantonese utterances 
(MC) is not as significant as for the CM utterances. This is because the grammar network used 
for MC utterances does not include an English segment, and therefore there should be no 
recognition error caused by the confusion between similar Cantonese and English phonemes. 

CL uses a large number of shared phoneme models between English and Cantonese. It 
attains the best recognition accuracy of 59% for the embedded English words, and at the same 
time, it maintains a reasonable performance on Cantonese. It is believed that the existing 
design of cross-lingual models can be improved further with more understanding about the 
phonetic variation in code-mixing speech. More training data will also be helpful. 

5. Language Modeling 

5.1 Collection and Selection of Text Data 
There are practical difficulties in collecting a large amount of text material to facilitate 
statistical language modeling for Cantonese-English code-mixing speech. Cantonese is a 
spoken dialect; many colloquial Cantonese words do not have a standard written form. In 
addition, written Cantonese is neither taught in schools nor recommended for official and 
documentary usage. Nevertheless, a limited amount of Cantonese text data can be found in 
certain columns of local newspapers, magazines, advertisements, and online articles (Snow, 
2004). On the other hand, code-mixing is a domain-specific phenomenon. It is found in the 
discourses that involve contemporary and cross-cultural issues, e.g., computer, business, 
fashion, food, and showbiz (Li, 1996). In our study, Cantonese text data are selected from 
three major sources, namely newspaper, magazines, and online diaries. Preliminary manual 
inspection was done to identify the sections or columns that are highly likely to contain 
code-mixing text. A total of 28 Chinese characters that are frequently used in spoken 
Cantonese but rarely used in standard Chinese were identified, e.g., 嘅, 嘢, 咁 (Snow, 2004). 
Articles that contain these characters were considered to be written in Cantonese. As a result, 
a text database with 6.8 million characters was compiled. There are about 4600 distinct 
Chinese characters and 4200 distinct English segments in the database. About 10% of these 
English segments are included in the CUMIX utterances. 

5.2 Training of Language Models 
The text data were used to train character tri-grams. Four different models were trained: 

CAN_LM: mono-lingual Cantonese language model; 
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CM_LM: code-mixing language model; 

CLASS_LM: class-based language model; 

TRANS_LM: translation-based language model. 

For CAN_LM, all English words were removed from the training text. They were 
considered as out-of-vocabulary (OOV) words during the evaluation. OOV words are assigned 
zero probability so that they may be missed in recognition. For CM_LM, all code-switched 
segments in the training text were mapped to the same word ID during the training process, no 
matter whether the words were found in the training text or not. By doing so, the likelihood of 
English segments is made much higher than that of the Cantonese characters, thus, Cantonese 
words may be easily misrecognized as English words. In CLASS_LM, code-switched 
segments were divided into 15 classes according to their parts of speech (POS) or meanings. 
Most of the classes were for nouns. TRANS_LM involves English-to-Cantonese translation, 
by which code-switched segments are translated into their Cantonese equivalents. 
Nevertheless, since not all of the code-switched terms have Cantonese equivalents, the POS 
classes being used in CLASS_LM were considered as well. 

The language models were evaluated in the phonetic-to-text (PTT) conversion task. 
Assuming that the true phonetic transcription is known, language models were used to 
determine the word sequence that best matched the transcription. For Chinese languages, PTT 
conversion is often formulated as a problem of syllable-to-character or Pinyin-to-text 
conversion. Statistical language models have proven to be very effective (Gao et al., 2002). In 
our study, PTT conversion was treated as a sub-task of decoding for speech recognition. The 
proposed code-mixing speech recognition system employs a two-pass decoding algorithm (see 
Section 7 for details). The first pass generates a syllable/word lattice using acoustic models 
and bilingual dictionary. Language models are used in the second pass to decode the Chinese 
character sequence. PTT conversion can be done by skipping the first pass and using the true 
syllable-level transcription to replace the hypothesized syllable lattice. In this way, the 
effectiveness of language models can be assessed. The true syllable transcription of the CM 
test utterances is used as the input. The PTT conversion accuracy attained by different 
language models is given in Table 11. 

Table 11. Phonetic-to-text conversion rate by different language models 

Language model PTT conversion rate 
(character accuracy) 

Monolingual Cantonese (CAN_LM) 88.8% 

Code-mixing (CS_LM) 89.3% 

Class-based (CLASS_LM) 91.5% 

Translation-based (TRANS_LM) 86.1% 
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The four language models are close to each other in performance because their 
differences are mainly on the code-switched segments. The translation approach (TRANS_LM) 
achieves the lowest PTT conversion rate. This is due to some of the translated Cantonese 
characters not appearing in the character list of the original Cantonese language models. This 
leads to the n-gram probabilities that are related to these characters being very low in 
TRANS_LM. The low likelihood affects the decision on the neighboring characters and leads 
to degradation of the overall conversion rate. Moreover, the code-switched segments are 
translated into Cantonese, and each translated term may contain more than one character. This 
causes a discrepancy in the computed values of the PTT conversion rate. 

6. Language Boundary Detection 

Language identification (LID) is an important process in a multilingual speech recognition 
system (Ma et al., 2007). The language identity information allows the use of two 
monolingual recognizers. However, the LID for recognizing code-mixing speech is not 
straightforward mainly because the speech segments that can be used for decisions are 
relatively short. For code-mixing speech, LID can be considered as a problem of language 
boundary detection (LBD). We consider two approaches below (Chan et al., 2006). 

6.1 LBD based on syllable bigram 
The syllable bigram probability of Cantonese is defined as the probability that a specific 
syllable pair occurs. In our study, these probabilities were computed from a transcribed 
Cantonese text database. In a code-mixing utterance, the Cantonese part is expected to have 
high syllable bigram probability, while the embedded English segments have relatively low 
syllable bigram probability, because of the mismatch in phonological and lexical properties. 
We use a Cantonese syllable recognizer based on the cross-lingual acoustic model CL as 
described in Section 4. For each pair of adjacent syllables in the recognized syllable sequence, 
the syllable bigram is retrieved. If the probability is higher than a threshold, this syllable-pair 
segment is considered to be Cantonese; otherwise, it is English or at the code-mixing 
boundary. It is possible that more than one English segment is detected within an utterance. 
Under the assumption that each utterance consists of exactly one English segment, we need to 
select one of the hypotheses. Our current strategy is to select the segment with the longest 
duration. On the other hand, if no English segment is found, the threshold is increased until 
the English segment includes at least one syllable. 

To evaluate the performance of an LBD algorithm, the detected boundaries of a language 
segment are compared to the true boundaries. If the detection errors on both sides of the 
segment exceed a threshold, an LBD error is recorded. In this study, the threshold was set to 
0.3 second. With the syllable bigram based detection algorithm, an LBD accuracy of 65.9% 
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was attained for the CM test utterances. 

6.2 LBD based on Syllable Lattice 
This approach makes use of the syllable/word lattice generated by a bilingual speech 
recognizer, which will be described in the next section. Syllable lattice is a compact 
representation of recognition output, which covers not only the best syllable sequence but also 
other possible alternatives. The lattice produced by our system contains Cantonese syllable 
units and English word/phrase units. English words/phrases generally have longer duration 
than Cantonese syllables since they may contain multiple syllables. The English segment with 
the longest duration in the lattice is most likely to indicate a correct recognition result, and the 
start and end time of the segment are taken as the language boundaries. With a properly 
selected insertion penalty, the LBD accuracy for CM test utterances was 82.3%. 

7. A Code-mixing Speech Recognition System 

7.1 System Overview and Decoding Algorithm 

 

Figure 4. The proposed code-mixing speech recognition system 
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A code-mixing speech recognition system was developed as shown in Figure 4. It consists of 
the cross-lingual acoustic models, the bilingual pronunciation dictionary, and the class-based 
language models as described in previous sections. It is assumed that the input utterance is 
either code-mixing speech with exactly one English segment, or monolingual Cantonese 
speech. The decoding algorithm is implemented with the HTK Toolkits (Young et al., 2001). 
It consists of two passes as described below. 

First pass 

In the first pass, the cross-lingual acoustic models and the bilingual pronunciation dictionary 
are used to construct a recognition network as shown in Figure 2. In the case where the input 
utterance is monolingual Cantonese, the recognition network is simplified into a syllable loop. 
Language models are not involved at this stage. The recognition network represents all 
possible hypotheses, from which the most likely ones are to be determined. The first-pass 
decoding is based on a token-passing algorithm. Each token refers to a partial hypothesis 
starting from the first frame of the utterance. At each time step, a feature vector is taken up 
and the existing tokens are extended through the HMM states in the recognition network. If 
there are many competing tokens at a network node, only the best N tokens are kept and the 
others are discarded. In this way, a syllable/word graph is generated as a compact 
representation of multiple hypotheses. The basic elements of the graph are nodes and arcs. 
Each arc represents a hypothesized Cantonese syllable or a hypothesized English word/phrase. 
It records the acoustic likelihood, the start time, and end time of the syllable or words/phrases. 
An example of mixed syllable/word graphs is shown in Figure 5. 

Figure 5. An example of mixed syllable/word graphs 
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Second pass 

In the second pass, the most likely code-mixing sentence is determined from the syllable/word 
graph. In addition to the acoustic likelihoods, language boundary information and language 
models are utilized in the search process. Firstly, the language boundary information is 
integrated to the syllable/word lattice by modifying the acoustic likelihood of hypothesized 
words. If a hypothesized word is in the same language as the recognized language, the 
acoustic likelihood is increased by a pre-determined value; otherwise, it is decreased by the 
same value. The optimal value of this bonus/penalty score is derived from development data. 
Secondly, the modified acoustic scores are integrated with the language model scores to form 
a character lattice. The hypothesized syllables in the graph are mapped to Chinese characters 
using a pronunciation dictionary (LSHK, 1997). Since a Cantonese syllable may correspond to 
more than one Chinese character, the resulting character graph is in fact an expanded version 
of the syllable graph. The English words/phrases in the graph remain untouched. In the word 
graph, the posterior probability of a hypothesized word can be computed by summing the 
posterior probabilities of all sentence hypotheses that share the word segment w at the same 
time interval. In Soong et al. (2004), the generalized word posterior probability (GWPP) was 
formulated mainly to deal with the inconsistent dynamic ranges of acoustic models and 
language models, and with the alignment ambiguities between different sentence hypotheses. 
The effectiveness of GWPP has been demonstrated in Cantonese large-vocabulary continuous 
speech recognition (Qian et al., 2006). 

Let w  denote a hypothesized word or syllable in the graph, with the start time s  and 
end time t . The GWPP of w  during the time interval [ , ]s t  is calculated from all word 
strings that contain w  with a time interval overlapping with [ , ]s t , i.e., 
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M M MW w s t w s t w s t= …  denotes a specific word string that 

contains M  words, and ;[ , ]n n nw s t  refers to the nth word in the string, which starts at time 

ns  and ends at nt . The conditions of nw w=  and [ , ] [ , ]n ns t s t∪ ≠ Φ  mean that the 
hypothesized word appears in this word string over approximately the same time 
interval. ( )m

m

t
msP x w  and 1

1( )m
mP w w −  denote respectively the acoustic model scores and the 

language model scores. The prior probability 1( )TP x  can be calculated by summing up all 
forward strings probabilities or backward string probabilities in the word graph. The 
weighting factors α  and β  are jointly optimized by using a held-out set of development 
data with a goal to achieve the minimum word error rate. 
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7.2 Experimental Results 
The performance of the code-mixing speech recognition system in Figure 4 was evaluated 
using the CM and MC test utterances. For the CM utterances, the character accuracy was 
measured for the Cantonese part and the word accuracy is measured for the embedded English 
segments. From the development data in CUMIX (see Section 3.3), the best values α  and 
β  were found to be 0.009 and 1.1 respectively. This leads to an overall accuracy of 55.1% for 
the development utterances. 

Without the use of language boundary detection, the overall recognition accuracy for CM 
and MC utterances were 55.3% and 50.3%, respectively, when the class-based language 
models CLASS_LM were used. The detailed results are given in Table 12. 

Table 12. Recognition accuracy without using language boundary information 

 Overall accuracy Cantonese Character 
accuracy English Word accuracy 

CM test utterances 55.3% 56.0% 48.4% 
MC utterances 50.3% 50.3%  

We also attempted to incorporate the detected language boundaries into the recognition 
process. Table 13 compares the effectiveness of the two LBD approaches described in Section 
6. With LBD based on syllable bigram, the overall recognition accuracy increases from 55.3% 
to 57.0%. For the syllable-lattice based LBD, although the overall accuracy does not increase 
significantly, there is a noticeable improvement on the recognition accuracy for the English 
words. Among the recognition errors on English words, 39.0% of them are deletion errors, 
while 44.2% are substitution errors. Deletion error means that no English word is found in the 
top-best hypothesis string. Substitution errors are mainly caused by incorrect language 
boundary thus the hypothesis English word and the reference English word have no or just 
very little overlap in time duration. For example, the word “evening” is mistakenly recognized 
as “even”, and “around” became “round”. 

It was also noted that the English word accuracy could be improved to 81.1% if the true 
language boundaries are used in the recognition process. It is believed that the recognition 
performance can be improved, when better language boundary detection algorithms become 
available. 

Table 13. Recognition accuracy attained with the incorporation of language 
boundary information. Only CM test utterances are used. 

 Overall 
accuracy 

Cantonese Character 
accuracy 

English Word 
accuracy 

Without LBD 55.3% 56.0% 48.4% 
LBD based on syllable bigram 57.0% 57.6% 49.0% 
LBD based on syllable lattice 56.0% 56.4% 53.0% 
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For Cantonese, the character accuracy was close to our expectation. The character 
accuracy (56.4%) was roughly equal to the syllable accuracy (59.7%) multiplied by the PTT 
conversion rate (91.5%). 

8. Conclusion 

Code-mixing speech recognition is a challenging problem. The difficulties are two-fold. 
Firstly, we have little understanding about this highly dynamic language phenomenon. Our 
study clearly reveals that code-mixing is not a simple insertion of one language into another. It 
comes with a lot of phonological, lexical, and grammatical variation with respect to 
monolingual speech spoken by native speakers. Unlike in monolingual speech recognition 
research, there are very few linguistic studies that can be consulted. We have to understand the 
problems by actually working on them. Secondly, it is practically difficult to collect sufficient 
code-mixing data for effective acoustic modeling and language modeling. The existing 
CUMIX database needs to be enhanced, especially in the amount of English speech. 

We have shown that cross-lingual acoustic models are more appropriate than 
language-dependent models. The proposed cross-lingual models attain an overall recognition 
accuracy of nearly 60% for code-mixing utterances. To design a cross-lingual phoneme set, 
we need to measure the similarity between the phonemes of the two languages. Our current 
approach is based on phonetic knowledge. It can be improved further with comprehensive 
acoustic analysis of real speech data. For language modeling, grouping English words into 
classes seems to be inevitable due to data sparseness. The class-based language models were 
shown to be effective in code-mixing speech recognition. 

Two different methods of language boundary detection have been evaluated. LBD based 
on syllable bigram exploits the phonological and lexical differences between Cantonese and 
English. LBD based on syllable lattice makes use of the intermediate result of speech 
recognition, which is more informative than the prior linguistic knowledge. Therefore, this 
method attains a significantly higher accuracy than the former one in language boundary 
detection. 

A complete speech recognition system for Cantonese-English code-mixing speech has 
been developed. The two-pass search algorithm enables flexible integration of additional 
knowledge sources. The overall recognition accuracy for Cantonese syllables and English 
words in code-mixing utterances is 56.0%. 
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