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Abstract

We present a novel response generation sys-
tem that can be trained end to end on large
quantities of unstructured Twitter conversa-
tions. A neural network architecture is used
to address sparsity issues that arise when in-
tegrating contextual information into classic
statistical models, allowing the system to take
into account previous dialog utterances. Our
dynamic-context generative models show con-
sistent gains over both context-sensitive and
non-context-sensitive Machine Translation and
Information Retrieval baselines.

1 Introduction

Until recently, the goal of training open-domain con-
versational systems that emulate human conversation
has seemed elusive. However, the vast quantities
of conversational exchanges now available on so-
cial media websites such as Twitter and Reddit raise
the prospect of building data-driven models that can
begin to communicate conversationally. The work
of Ritter et al. (2011), for example, demonstrates that
a response generation system can be constructed from
Twitter conversations using statistical machine trans-
lation techniques, where a status post by a Twitter
user is “translated” into a plausible looking response.

However, an approach such as that presented in Rit-
ter et al. (2011) does not address the challenge of

*The entirety of this work was conducted while at Microsoft
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†Corresponding authors: Alessandro Sordoni (sor-
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context
because of your game ?

message
yeah i’m on my 

way nowresponse
ok good luck !

Figure 1: Example of three consecutive utterances occur-
ring between two Twitter users A and B.

generating responses that are sensitive to the context
of the conversation. Broadly speaking, context may
be linguistic or involve grounding in the physical or
virtual world, but we here focus on linguistic context.
The ability to take into account previous utterances
is key to building dialog systems that can keep con-
versations active and engaging. Figure 1 illustrates
a typical Twitter dialog where the contextual infor-
mation is crucial: the phrase “good luck” is plainly
motivated by the reference to “your game” in the first
utterance. In the MT model, such contextual sensitiv-
ity is difficult to capture; moreover, naive injection
of context information would entail unmanageable
growth of the phrase table at the cost of increased
sparsity, and skew towards rarely-seen context pairs.
In most statistical approaches to machine translation,
phrase pairs do not share statistical weights regard-
less of their intrinsic semantic commonality.

We propose to address the challenge of context-
sensitive response generation by using continuous
representations or embeddings of words and phrases
to compactly encode semantic and syntactic simi-
larity. We argue that embedding-based models af-

196



ford flexibility to model the transitions between con-
secutive utterances and to capture long-span depen-
dencies in a domain where traditional word and
phrase alignment is difficult (Ritter et al., 2011). To
this end, we present two simple, context-sensitive
response-generation models utilizing the Recurrent
Neural Network Language Model (RLM) architec-
ture of (Mikolov et al., 2010). These models first
encode past information in a hidden continuous repre-
sentation, which is then decoded by the RLM to pro-
mote plausible responses that are simultaneously flu-
ent and contextually relevant. Unlike typical complex
task-oriented multi-modular dialog systems (Young,
2002; Stent and Bangalore, 2014), our architecture
is completely data-driven and can easily be trained
end-to-end using unstructured data without requiring
human annotation, scripting, or automatic parsing.

This paper makes the following contributions. We
present a neural network architecture for response
generation that is both context-sensitive and data-
driven. As such, it can be trained from end to end on
massive amounts of social media data. To our knowl-
edge, this is the first application of a neural-network
model to open-domain response generation, and we
believe that the present work will lay groundwork for
more complex models to come. We additionally in-
troduce a novel multi-reference extraction technique
that shows promise for automated evaluation.

2 Related Work

Our work naturally lies in the path opened by Ritter
et al. (2011), but we generalize their approach by
exploiting information from a larger context. Rit-
ter et al. and our work represent a radical paradigm
shift from other work in dialog. More traditional
dialog systems typically tease apart dialog manage-
ment (Young, 2002) from response generation (Stent
and Bangalore, 2014), while our holistic approach
can be considered a first attempt to accomplish both
tasks jointly. While there are previous uses of ma-
chine learning for response generation (Walker et al.,
2003), dialog state tracking (Young et al., 2010), and
user modeling (Georgila et al., 2006), many compo-
nents of typical dialog systems remain hand-coded:
in particular, the labels and attributes defining dia-
log states. In contrast, the dialog state in our neural
network model is completely latent and directly opti-
mized towards end-to-end performance. In this sense,

we believe the framework of this paper is a signif-
icant milestone towards more data-driven and less
hand-coded dialog processing.

Continuous representations of words and phrases
estimated by neural network models have been ap-
plied on a variety of tasks ranging from Information
Retrieval (IR) (Huang et al., 2013; Shen et al., 2014),
Online Recommendation (Gao et al., 2014b), Ma-
chine Translation (MT) (Auli et al., 2013; Cho et al.,
2014; Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014), and Language Modeling (LM) (Bengio
et al., 2003; Collobert and Weston, 2008). Gao et
al. (2014a) successfully use an embedding model to
refine the estimation of rare phrase-translation prob-
abilities, which is traditionally affected by sparsity
problems. Robustness to sparsity is a crucial prop-
erty of our method, as it allows us to capture context
information while avoiding unmanageable growth of
model parameters.

Our work extends the Recurrent Neural Network
Language Model (RLM) of (Mikolov et al., 2010),
which uses continuous representations to estimate a
probability function over natural language sentences.
We propose a set of conditional RLMs where contex-
tual information (i.e., past utterances) is encoded in
a continuous context vector to help generate the re-
sponse. Our models differ from most previous work
in the way the context vector is constructed. For
example, Mikolov and Zweig (2012) and Auli et al.
(2013) use a pre-trained topic model. In our models,
the context vector is learned along with the condi-
tional RLM that generates the response. Additionally,
the learned context encodings do not exclusively cap-
ture contentful words. Indeed, even “stop words” can
carry discriminative power in this task; for exam-
ple, all words in the utterance “how are you?” are
commonly characterized as stop words, yet this is a
contentful dialog utterance.

3 Recurrent Language Model

We give a brief overview of the Recurrent Language
Model (RLM) (Mikolov et al., 2010) architecture that
our models extend. A RLM is a generative model
of sentences, i.e., given sentence s = s1, . . . , sT , it
estimates:

p(s) =
T∏
t=1

p(st|s1, . . . , st−1). (1)
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The model architecture is parameterized by three
weight matrices, ΘRNN = 〈Win,Wout,Whh〉: an in-
put matrixWin, a recurrent matrixWhh and an output
matrix Wout, which are usually initialized randomly.
The rows of the input matrix Win ∈ RV×K contain
the K-dimensional embeddings for each word in the
language vocabulary of size V . Let us denote by st
both the vocabulary token and its one-hot representa-
tion, i.e., a zero vector of dimensionality V with a 1
corresponding to the index of the st token. The em-
bedding for st is then obtained by s>t Win. The recur-
rent matrix Whh ∈ RK×K keeps a history of the sub-
sequence that has already been processed. The output
matrix Wout ∈ RK×V projects the hidden state ht
into the output layer ot, which has an entry for each
word in the vocabulary V . This value is used to gen-
erate a probability distribution for the next word in
the sequence. Specifically, the forward pass proceeds
with the following recurrence, for t = 1, . . . , T :

ht = σ(s>t Win + h>t−1Whh), ot = h>t Wout (2)

where σ is a non-linear function applied element-
wise, in our case the logistic sigmoid. The recurrence
is seeded by setting h0 = 0, the zero vector. The
probability distribution over the next word given the
previous history is obtained by applying the softmax
activation function:

P (st = w|s1, . . . , st−1) =
exp(otw)∑V
v=1 exp(otv)

. (3)

The RLM is trained to minimize the negative log-
likelihood of the training sentence s:

L(s) = −
T∑
t=1

logP (st|s1, . . . , st−1). (4)

The recurrence is unrolled backwards in time us-
ing the back-propagation through time (BPTT) al-
gorithm (Rumelhart et al., 1988), and gradients are
accumulated over multiple time-steps.

4 Context-Sensitive Models

We distinguish three linguistic entities in a conver-
sation between two users A and B: the context1 c,

1In this work, the context is purely linguistic, but future work
might integrate further contextual information, e.g., geographical
location, time information, or other forms of grounding.
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Figure 2: Compact representation of an RLM (left) and
unrolled representation for two time steps (right).

the message m and response r. The context c rep-
resents a sequence of past dialog exchanges of any
length; then B emits a message m to which A reacts
by formulating its response r (see Figure 1).

We use three context-based generation models to
estimate a generation model of the response r, r =
r1, . . . , rT , conditioned on past information c and m:

p(r|c,m) =
T∏
t=1

p(rt|r1, . . . , rt−1, c,m). (5)

These three models differ in the manner in which
they compose the context-message pair (c,m).

4.1 Tripled Language Model

In our first model, dubbed RLMT, we straightfor-
wardly concatenate each utterance c, m, r into a
single sentence s and train the RLM to minimize
L(s). Given c and m, we compute the probability
of the response as follows: we perform the forward
propagation over the known utterances c andm to ob-
tain a hidden state encoding useful information about
previous utterances. Subsequently, we compute the
likelihood of the response from that hidden state.

An issue with this simple approach is that the con-
catenated sentence s will be very long on average,
especially if the context comprises multiple utter-
ances. Modelling such long-range dependencies with
an RLM is difficult and is still considered an open
problem (Pascanu et al., 2013). We will consider
RLMT as an additional context-sensitive baseline for
the models we present next.

4.2 Dynamic-Context Generative Model I

The above limitation of RLMT can be addressed by
strengthening the context bias. In our second model
(DCGM-I), the context and the message are encoded
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Figure 3: Compact representations of DCGM-I (left) and
DCGM-II (right). The decoder RLM receives a bias from
the context encoder. In DCGM-I, we encode the bag-of-
words representation of both c and m in a single vector
bcm. In DCGM-II, we concatenate the representations bc
and bm on the first layer to preserve order information.

into a fixed-length vector representation the is used
by the RLM to decode the response. This is illus-
trated in Figure 3 (left). First, we consider c andm as
a single sentence and compute a single bag-of-words
representation bcm ∈ RV . Then, bcm is provided
as input to a multilayered non-linear forward archi-
tecture that produces a fixed-length representation
that is used to bias the recurrent state of the decoder
RLM. At training time, both the context encoder and
the RLM decoder are learned so as to minimize the
negative log-probability of the generated response.

The parameters of the model are ΘDCGM-I =
〈Win,Whh,Wout, {W `

f}L`=1〉, where {W `
f}L`=1 are

the weights for the L layers of the feed-forward con-
text networks. The fixed-length context vector kL is
obtained by forward propagation of the network:

k1 = b>cmW 1
f

k` = σ(k>`−1W
`
f ) for ` = 2, · · · , L (6)

The rows of W 1
f contain the embeddings of the vo-

cabulary.2 These are different from those employed
in the RLM and play a crucial role in promoting the
specialization of the context encoder to a distinct
task. The hidden layer of the decoder RLM takes the

2Notice that the first layer of the encoder network is linear.
We found that this helps learning the embedding matrix as it
reduces the vanishing gradient effect partially due to stacking of
squashing non-linearities (Pascanu et al., 2013).

following form:

ht = σ(h>t−1Whh + kL + s>t Win) (7a)

ot = h>t Wout (7b)

p(st+1|s1, . . . , st−1, c,m) = softmax(ot) (7c)

This model conditions on the previous utterances via
biasing the hidden layer state on the context repre-
sentation kL. Note that the context representation
does not change through time. This is useful because:
(a) it forces the context encoder to produce a repre-
sentation general enough to be useful for generating
all words in the response and (b) it helps the RLM
decoder to remember context information when gen-
erating long responses.

4.3 Dynamic-Context Generative Model II

Because DCGM-I does not distinguish between c and
m, that model has the propensity to underestimate
the strong dependency that holds between m and r.
Our third model (DCGM-II) addresses this issue by
concatenating the two linear mappings of the bag-of-
words representations bc and bm in the input layer of
the feed-forward network representing c and m (see
Figure 3 right). Concatenating continuous representa-
tions prior to deep architectures is a common strategy
to obtain order-sensitive representations (Bengio et
al., 2003; Devlin et al., 2014).

The forward equations for the context encoder are:

k1 = [b>c W 1
f , b
>
mW

1
f ],

k` = σ(k>`−1W
`
f ) for ` = 2, · · · , L (8)

where [x, y] denotes the concatenation of x and y vec-
tors. In DCGM-II, the bias on the recurrent hidden
state and the probability distribution over the next
token are computed as described in Eq. 7.

5 Experimental Setting

5.1 Dataset Construction

For computational efficiency and to alleviate the bur-
den of human evaluators, we restrict the context se-
quence c to a single sentence. Hence, our dataset is
composed of “triples” τ ≡ (cτ ,mτ , rτ ) consisting of
three sentences. We mined 127M context-message-
response triples from the Twitter FireHose, covering
the 3-month period June 2012 through August 2012.
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Corpus # Triples Avg # Ref [Min,Max] # Ref

Tuning 2118 3.22 [1, 10]
Test 2114 3.58 [1, 10]

Table 1: Number of triples, average, minimum and maxi-
mum number of references for tuning and test corpora.

Only those triples where context and response were
generated by the same user were extracted. To mini-
mize noise, we selected triples that contained at least
one frequent bigram that appeared more than 3 times
in the corpus. This produced a corpus of 29M Twitter
triples. Additionally, we hired crowdsourced raters to
evaluate approximately 33K candidate triples. Judg-
ments on a 5-point scale were obtained from 3 raters
apiece. This yielded a set of 4232 triples with a mean
score of 4 or better that was then randomly binned
into a tuning set of 2118 triples and a test set of 2114
triples3. The mean length of responses in these sets
was approximately 11.5 tokens, after cleanup (e.g.,
stripping of emoticons), including punctuation.

5.2 Automatic Evaluation
We evaluate all systems using BLEU (Papineni et al.,
2002) and METEOR (Banerjee and Lavie, 2005), and
supplement these results with more targeted human
pairwise comparisons in Section 6.3. A major chal-
lenge in using these automated metrics for response
generation is that the set of reasonable responses
in our task is potentially vast and extremely diverse.
The dataset construction method just described yields
only a single reference for each status. Accordingly,
we extend the set of references using an IR approach
to mine potential responses, after which we have hu-
man judges rate their appropriateness. As we see in
Section 6.3, it turns out that by optimizing systems
towards BLEU using mined multi-references, BLEU
rankings align well with human judgments. This lays
groundwork for interesting future correlation studies.

Multi-reference extraction We use the following
algorithm to better cover the space of reasonable re-
sponses. Given a test triple τ ≡ (cτ ,mτ , rτ ), our
goal is to mine other responses {rτ̃} that fit the con-
text and message pair (cτ ,mτ ). To this end, we first
select a set of 15 candidate triples {τ̃} using an IR

3The Twitter ids of the tuning and test sets along with the
code for the neural network models may be obtained from
http://research.microsoft.com/convo/

system. The IR system is calibrated in order to select
candidate triples τ̃ for which both the message mτ̃

and the response rτ̃ are similar to the original mes-
sage mτ and response rτ . Formally, the score of a
candidate triple is:

s(τ̃ , τ) = d(mτ̃ ,mτ ) (αd(rτ̃ , rτ )+(1−α)ε), (9)

where d is the bag-of-words BM25 similarity func-
tion (Robertson et al., 1995), α controls the impact
of the similarity between the responses and ε is a
smoothing factor that avoids zero scores for candi-
date responses that do not share any words with the
reference response. We found that this simple for-
mula provided references that were both diverse and
plausible. Given a set of candidate triples {τ̃}, hu-
man evaluators are asked to rate the quality of the
response within the new triples {(cτ ,mτ , rτ̃ )}. Af-
ter human evaluation, we retain the references for
which the score is 4 or better on a 5 point scale, re-
sulting in 3.58 references per example on average
(Table 1). The average lengths for the responses in
the multi-reference tuning and test sets are 8.75 and
8.13 tokens respectively.

5.3 Feature Sets

The response generation systems evaluated in this pa-
per are parameterized as log-linear models in a frame-
work typical of statistical machine translation (Och
and Ney, 2004). These log-linear models comprise
the following feature sets:

MT MT features are derived from a large response
generation system built along the lines of Ritter et
al. (2011), which is based on a phrase-based MT de-
coder similar to Moses (Koehn et al., 2007). Our
MT feature set includes the following features that
are common in Moses: forward and backward maxi-
mum likelihood “translation” probabilities, word and
phrase penalties, linear distortion, and a modified
Kneser-Ney language model (Kneser and Ney, 1995)
trained on Twitter responses. For the translation prob-
abilities, we built a very large phrase table of 160.7
million entries by first filtering out Twitterisms (e.g.,
long sequences of vowels, hashtags), and then se-
lecting candidate phrase pairs using Fisher’s exact
test (Ritter et al., 2011). We also included MT de-
coder features specifically motivated by the response
generation task: Jaccard distance between source and
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System BLEU

RANDOM 0.33
MT 3.21
HUMAN 6.08

Table 2: Multi-reference corpus-level BLEU obtained by
leaving one reference out at random.

target phrase, Fisher’s exact probability, and a score
relating the lengths of source and target phrases.

IR We also use an IR feature built from an index of
triples, whose implementation roughly matches the
IRstatus approach described in Ritter et al. (2011): For
a test triple τ , we choose rτ̃ as the candidate response
iff τ̃ = arg maxτ̃ d(mτ ,mτ̃ ).

CMM Neither MT nor IR traditionally take into ac-
count contextual information. Therefore, we take into
consideration context and message matches (CMM),
i.e., exact matches between c, m and r. We define
8 features as the [1-4]-gram matches between c and
the candidate reply r and the [1-4]-gram matches
between m and the candidate reply r. These exact
matches help capture and promote contextual infor-
mation in the replies.

RLMT, DCGM-I, DCGM-II We consider the
RLM trained on the concatenated triples, denoted as
RLMT (Section 4.1), to be a context-sensitive RLM
baseline. Each neural network model contributes an
additional feature corresponding to the likelihood of
the candidate response given context and message.

5.4 Model Training
The proposed models are trained on a 4M subset of
the triple data. The vocabulary consists of the most
frequent V = 50K words. In order to speed up train-
ing, we use the Noise-Contrastive Estimation (NCE)
loss, which avoids repeated summations over V by
approximating the probability of the target word (Gut-
mann and Hyvärinen, 2010). Parameter optimization
is done using Adagrad (Duchi et al., 2011) with a
mini-batch size of 100 and a learning rate α = 0.1,
which we found to work well on held-out data. In
order to stabilize learning, we clip the gradients to
a fixed range [−10, 10], as suggested in Mikolov et
al. (2010). All the parameters of the neural models
are sampled from a normal distribution N (0, 0.01)
while the recurrent weight Whh is initialized as a

random orthogonal matrix and scaled by 0.01. To
prevent over-fitting, we evaluate performance on a
held-out set during training and stop when the objec-
tive increases. The size of the RLM hidden layer is
set to K = 512, where the context encoder is a 512,
256, 512 multilayer network. The bottleneck in the
middle compresses context information that leads to
similar responses and thus achieves better generaliza-
tion. The last layer embeds the context vector into
the hidden space of the decoder RLM.

5.5 Rescoring Setup
We evaluate the proposed models by rescoring the
n-best candidate responses obtained using the MT
phrase-based decoder and the IR system. In contrast
to MT, the candidate responses provided by IR have
been created by humans and are less affected by flu-
ency issues. The different n-best lists will provide
a comprehensive testbed for our experiments. First,
we augment the n-best list of the tuning set with the
scores of the model of interest. Then, we run an itera-
tion of MERT (Och, 2003) to estimate the log-linear
weights of the new features. At test time, we rescore
the test n-best list with the new weights.

6 Results

6.1 Lower and Upper Bounds
Table 2 shows the expected upper and lower bounds
for this task as suggested by BLEU scores for human
responses and a random response baseline. The RAN-
DOM system comprises responses randomly extracted
from the triples corpus. HUMAN is computed by
choosing one reference amongst the multi-reference
set for each context-status pair.4 Although the scores
are lower than those usually reported in SMT tasks,
the ranking of the three systems is unambiguous.

6.2 BLEU and METEOR
The results of automatic evaluation using BLEU and
METEOR are presented in Table 3, where some
broad patterns emerge. First, both metrics indi-
cate that a phrase-based MT decoder outperforms
a purely IR approach. Second, adding CMM features

4For the human score, we compute corpus-level BLEU with
a sampling scheme that randomly leaves out one reference - the
human sentence to score - for each reference set. This sampling
scheme (repeated with 100 trials) is also applied for the MT and
RANDOM system so as to make BLEU scores comparable.
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MT n-best BLEU (%) METEOR (%)

MT 9 feat. 3.60 (-9.5%) 9.19 (-0.9%)
CMM 9 feat. 3.33 (-16%) 9.34 (+0.7%)
� MT + CMM 17 feat. 3.98 (-) 9.28 (-)

RLMT 2 feat. 4.13 (+3.7%) 9.54 (+2.7%)
DCGM-I 2 feat. 4.26 (+7.0%) 9.55 (+2.9%)
DCGM-II 2 feat. 4.11 (+3.3%) 9.45 (+1.8%)

DCGM-I + CMM 10 feat. 4.44 (+11%) 9.60 (+3.5%)
DCGM-II + CMM 10 feat. 4.38 (+10%) 9.62 (+3.5%)

IR n-best BLEU (%) METEOR (%)

IR 2 feat. 1.51 (-55%) 6.25 (-22%)
CMM 9 feat. 3.39 (-0.6%) 8.20 (+0.6%)
� IR + CMM 10 feat. 3.41 (-) 8.04 (-)

RLMT 2 feat. 2.85 (-16%) 7.38 (-8.2%)
DCGM-I 2 feat. 3.36 (-1.5%) 7.84 (-2.5%)
DCGM-II 2 feat. 3.37 (-1.1%) 8.22 (+2.3%)

DCGM-I + CMM 10 feat. 4.07 (+19%) 8.67 (+7.8%)
DCGM-II + CMM 10 feat. 4.24 (+24%) 8.61 (+7.1%)

Table 3: Context-sensitive ranking results on both MT (left) and IR (right) n-best lists, n = 1000. The subscript feat.
indicates the number of features of the models. The log-linear weights are estimated by running one iteration of MERT.
We mark by (±%) the relative improvements with respect to the reference system (�).

to the baseline systems helps. Third, the neural net-
work models contribute measurably to improvement:
RLMT and DCGM models outperform baselines, and
DCGM models provide more consistent gains than
RLMT.

MT vs. IR BLEU and METEOR scores indicate
that the phrase-based MT decoder outperforms a
purely IR approach, despite the fact that IR proposes
fluent human generated responses. This may be be-
cause the IR model only loosely captures important
patterns between message and response: It ranks
candidate responses solely by the similarity of their
message with the message of the test triple (§5.3). As
a result, the top ranked response is likely to drift from
the purpose of the original conversation. The MT ap-
proach, by contrast, more directly models statistical
patterns between message and response.

CMM MT+CMM, totaling 17 features (9 from MT
+ 8 CMM), improves 0.38 BLEU points, a 9.5%
relative improvement, over the baseline MT model.
IR+CMM, with 10 features (IR + word penalty +
8 CMM), benefits even more, attaining 1.8 BLEU
points and 1.5 METEOR points over the IR base-
line. Figure 4 (a) and (b) plots the magnitude of
the learned CMM feature weights for MT+CMM
and IR+CMM. CMM features help in both these hy-
pothesis spaces and especially on the IR n-best list.
Figure 4 (b) supports the hypothesis formulated in the
previous paragraph: Since IR solely captures inter-
message similarities, the matches between message
and response are important, while context matches
help in providing additional gains. The phrase-based
statistical patterns captured by the MT system do a
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(d) DCGMII+CMM on IR

Figure 4: Comparison of the weights of learned CMM
features for MT+CMM and IR+CMM systems (a) et (b)
and DCGM-II+CMM on MT and IR (c) and (d).

good job in explaining away 1-gram and 2-gram mes-
sage matches (Figure 4 (a)) and the performance gain
mainly comes from context matches. On the other
hand, we observe that 4-gram matches may be impor-
tant in selecting appropriate responses. Inspection of
the tuning set reveals instances where responses con-
tain long subsequences of their corresponding mes-
sages, e.g., m = “good night best friend, I love you”,
r = “I love you too, good night best friend”. Although
infrequent, such higher-order n-gram matches, when
they occur, may provide a more robust signal of the
quality of the response than 1- and 2-gram matches,
given the highly conversational nature of our dataset.

RLMT and DCGM Both RLMT and DCGM
models outperform their respective MT and IR base-
lines. Both models also exhibit similar performance
and show improvements over the MT+CMM mod-
els, albeit using a lower dimensional feature space.
We believe that their similar performance is due to
the limited diversity of MT n-best list together with
gains in fluency stemming from the strong language
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System A System B Gain (%) CI

HUMAN MT+CMM 13.6* [12.4,14.8]

DCGM-II MT 1.9* [0.8, 2.9]
DCGM-II+CMM MT 3.1* [2.0, 4.3]
DCGM-II+CMM MT+CMM 1.5* [0.5, 2.5]

DCGM-II IR 5.2* [4.0, 6.4]
DCGM-II+CMM IR 5.3* [4.1, 6.6]
DCGM-II+CMM IR+CMM 2.3* [1.2, 3.4]

Table 4: Pairwise human evaluation scores between Sys-
tem A and B. The first (second) set of results refer to the
MT (IR) hypothesis list. The asterisk means agreement
between human preference and BLEU rankings.

model provided by the RLM. In the case of IR mod-
els, on the other hand, there is more headroom for
improvement and fluency is already guaranteed. Any
gains must come from context and message matches.
Hence, RLMT underperforms with respect to both
DCGM and IR+CMM. The DCGM models appear to
have better capacity to retain contextual information
and thus achieve similar performance to IR+CMM
despite their lack of exact n-gram match information.

In the present experimental setting, no striking
performance difference can be observed between the
two versions of the DCGM architecture. If multiple
sequences were used as context, we expect that the
DCGM-II model would likely benefit more owing to
the separate encoding of message and context.

DCGM+CMM We also investigated whether mix-
ing exact CMM n-gram overlap with semantic in-
formation encoded by the DCGM models can bring
additional gains. DCGM-{I-II}+CMM systems each
totaling 10 features show increases of up to 0.48
BLEU points over MT+CMM and up to 0.88 BLEU
over the model based on Ritter et al. (2011). ME-
TEOR improvements similarly align with BLEU im-
provements both for MT and IR lists. We take this
as evidence that CMM exact matches and DCGM
semantic matches interact positively, a finding that
comports with Gao et al. (2014a), who show that
semantic relationships mined through phrase embed-
dings correlate positively with classic co-occurrence-
based estimations. Analysis of CMM feature weights
in Figure 4 (c) and (d) suggests that 1-gram matches
are explained away by the DCGM model, but that
higher order matches are important. It appears that
DCGM models might be improved by preserving

word-order information in context and message en-
codings.

6.3 Human Evaluation

Human evaluation was conducted using crowd-
sourced annotators. Annotators were asked to com-
pare the quality of system output responses pairwise
(“Which is better?”) in relation to the context and
message strings in the 2114 item test set. Identical
strings were held out, so that the annotators only saw
those outputs that differed. Paired responses were
presented in random order to the annotators, and each
pair of responses was judged by 5 annotators.

Table 4 summarizes the results of human evalua-
tion, giving the difference in mean scores (pairwise
preference margin) between systems and 95% confi-
dence intervals generated using Welch’s t-test. Iden-
tical strings not shown to raters are incorporated with
an automatically assigned score of 0.5. The pattern in
these results is clear and consistent: context-sensitive
systems (+CMM) outperform non-context-sensitive
systems, with preference gains as high as approxi-
mately 5.3% in the case of DCGM-II+CMM versus
IR, and about 3.1% in the case of DCGM-II+CMM
versus MT. Similarly, context-sensitive DCGM sys-
tems outperform non-DCGM context-sensitive sys-
tems by 1.5% (MT) and 2.3% (IR). These results are
consistent with the automated BLEU rankings and
confirm that our best performing DCGM models out-
perform both raw baseline and the context-sensitive
baseline using CMM features.

6.4 Discussion

Table 5 provides examples of responses generated on
the tuning corpus by the MT-based DCGM-II+CMM
system, our best system in terms of both BLEU and
human evaluation. Responses from this system are on
average shorter (8.95 tokens) than the original human
responses in the tuning set (11.5 tokens). Overall, the
outputs tend to be generic or commonplace, but are
often reasonably plausible in the context as in ex-
amples 1-3, especially where context and message
contain common conversational elements. Example 2
illustrates the impact of context-sensitivity: the word
“book” in the response is not found in the message.
Nonetheless, longer generated responses are apt to
degrade both syntactically and in terms of content.
We notice that longer responses are likely to present
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# Context c Message m Generated Response r

1 noone can help this time its just i need a support system well im here to support you. whenever you
need me.

thank you, i appreciate it thank you

2 nothin much, and how’s the book?! its good but i’m only like halfway through
cuz i don’t feel like reading. i’m so bored ...

that’s good! i have the book but i’m
bored too.

3 i know! what have you been up to? nothing really. just enjoying summer and
working. what about you?

that’s good! nothing much just
listening to music and you?

4 thanks, your way better though i’m just good at expressing it that’s but trust
me you are freakin amazing and waay better

i know, i don’t trust you, i love you
too! thank you

5 thanks. yeah i am good thanks! good, but angry! sorry you’re angry, been there, i hope it dies
down.

i hope so too, i’m not angry!!

6 figures. bass. never ate bass. bass is extremely mild with very few bones.
my favorite after catfish

that’s one of the bones, chuck bass is
mine too.

7 today i will walk for miles. clear sky clear mind. love walking. it’s too hot to walk this month.
i haven’t moved. frozen. heat freeze.

it’s too hot for you to get up to honey
if you have frozen yogurt to you.

8 arresting people over “nasty tweets”? please. i’m not
condoning what the lad did but arresting him is a tad
silly.

it appears he may have sent death threats to
others while all this was kicking off too.

i did! he was armed with nuclear
threats? that’s what’s happening to
you.

Table 5: Sample responses produced by the MT-based DCGM-II+CMM system.

information that conflicts either internally within the
response itself, or is at odds with the context, as in ex-
amples 4-5. This is not unsurprising, since our model
lacks mechanisms both for reflecting agent intent in
the response and for maintaining consistency with
respect to sentiment polarity. Longer context and
message components may also result in responses
that wander off-topic or lapse into incoherence as in
6-8, especially when relatively low frequency uni-
grams (“bass”, “threat”) are echoed in the response.
In general, we expect that larger datasets and incorpo-
ration of more extensive contexts into the model will
help yield more coherent results in these cases. Con-
sistent representation of agent intent is outside the
scope of this work, but will likely remain a significant
challenge.

7 Conclusion

We have formulated a neural network architecture
for data-driven response generation trained from so-
cial media conversations, in which generation of
responses is conditioned on past dialog utterances
that provide contextual information. We have pro-
posed a novel multi-reference extraction technique
allowing for robust automated evaluation using stan-
dard SMT metrics such as BLEU and METEOR.
Our context-sensitive models consistently outper-
form both context-independent and context-sensitive
baselines by up to 11% relative improvement in

BLEU in the MT setting and 24% in the IR setting, al-
beit using a minimal number of features. As our mod-
els are completely data-driven and self-contained,
they hold the potential to improve fluency and con-
textual relevance in other types of dialog systems.

Our work suggests several directions for future
research. We anticipate that there is much room for
improvement if we employ more complex neural net-
work models that take into account word order within
the message and context utterances. Direct genera-
tion from neural network models is an interesting and
potentially promising next step. Future progress in
this area will also greatly benefit from thorough study
of automated evaluation metrics.
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