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Abstract

We present three approaches for unsupervised
grammar induction that are sensitive to data
complexity and apply them to Klein and Man-
ning’s Dependency Model with Valence. The
first, Baby Steps, bootstraps itself via iterated
learning of increasingly longer sentences and
requires no initialization. This method sub-
stantially exceeds Klein and Manning’s pub-
lished scores and achieves 39.4% accuracy on
Section 23 (all sentences) of the Wall Street
Journal corpus. The second,Less is More,
uses a low-complexity subset of the avail-
able data: sentences up to length 15. Focus-
ing on fewer but simpler examples trades off
quantity against ambiguity; it attains 44.1%
accuracy, using the standard linguistically-
informed prior and batch training, beating
state-of-the-art.Leapfrog, our third heuristic,
combinesLess is More with Baby Steps by
mixing their models of shorter sentences, then
rapidly ramping up exposure to the full train-
ing set, driving up accuracy to 45.0%. These
trends generalize to the Brown corpus; aware-
ness of data complexity may improve other
parsing models and unsupervised algorithms.

1 Introduction

Unsupervised learning of hierarchical syntactic
structure from free-form natural language text is a
hard problem whose eventual solution promises to
benefit applications ranging from question answer-
ing to speech recognition and machine translation.
A restricted version that targets dependencies and

∗Partially funded by NSF award IIS-0811974; first author
supported by the Fannie & John Hertz Foundation Fellowship.

assumes partial annotation, e.g., sentence bound-
aries, tokenization and typically even part-of-speech
(POS) tagging, has received much attention, elicit-
ing a diverse array of techniques (Smith and Eis-
ner, 2005; Seginer, 2007; Cohen et al., 2008). Klein
and Manning’s (2004) Dependency Model with Va-
lence (DMV) was the first to beat a simple parsing
heuristic — the right-branching baseline. Today’s
state-of-the-art systems (Headden et al., 2009; Co-
hen and Smith, 2009) are still rooted in the DMV.

Despite recent advances, unsupervised parsers lag
far behind their supervised counterparts. Although
large amounts of unlabeled data are known to im-
prove semi-supervised parsing (Suzuki et al., 2009),
the best unsupervised systems use less data than is
available for supervised training, relying on complex
models instead: Headden et al.’s (2009) Extended
Valence Grammar (EVG) combats data sparsity with
smoothing alone, training on the same small subset
of the tree-bank as the classic implementation of the
DMV; Cohen and Smith (2009) use more compli-
cated algorithms (variational EM and MBR decod-
ing) and stronger linguistic hints (tying related parts
of speech and syntactically similar bilingual data).

We explore what can be achieved through judi-
cious use of data and simple, scalable techniques.
Our first approach iterates over a series of training
sets that gradually increase in size and complex-
ity, forming an initialization-independent scaffold-
ing for learning a grammar. It works with Klein and
Manning’s simple model (the original DMV) and
training algorithm (classic EM) but eliminates their
crucial dependence on manually-tuned priors. The
second technique is consistent with the intuition that
learning is most successful within a band of the size-
complexity spectrum. Both could be applied to more
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intricate models and advanced learning algorithms.
We combine them in a third, efficient hybrid method.

2 Intuition

Focusing on simple examples helps guide unsuper-
vised learning,1 as blindly added confusing data can
easily mislead training. We suggest that unless it is
increased gradually, unbridled, complexity can over-
whelm a system. How to grade an example’s diffi-
culty? The cardinality of its solution space presents
a natural proxy. In the case of parsing, the num-
ber of possible syntactic trees grows exponentially
with sentence length. For longer sentences, the un-
supervised optimization problem becomes severely
under-constrained, whereas for shorter sentences,
learning is tightly reined in by data. In the extreme
case of a single-word sentence, there is no choice
but to parse it correctly. At two words, a raw 50%
chance of telling the head from its dependent is still
high, but as length increases, the accuracy of even
educated guessing rapidly plummets. In model re-
estimation, long sentences amplify ambiguity and
pollute fractional counts with noise. At times, batch
systems are better off using less data.

Baby Steps: Global non-convex optimization is
hard. We propose a meta-heuristic that takes the
guesswork out of initializing local search. Begin-
ning with an easy (convex) case, it slowly extends it
to the fully complex target task by taking tiny steps
in the problem space, trying not to stray far from
the relevant neighborhoods of the solution space. A
series of nested subsets of increasingly longer sen-
tences that culminates in the complete data set offers
a natural progression. Its base case — sentences of
length one — has a trivial solution that requires nei-
ther initialization nor search yet reveals something
of sentence heads. The next step — sentences of
length one and two — refines initial impressions
of heads, introduces dependents, and exposes their
identities and relative positions. Although not rep-
resentative of the full grammar, short sentences cap-
ture enough information to paint most of the picture
needed by slightly longer sentences. They set up an
easier, incremental subsequent learning task. Step
k + 1 augments training input to include lengths

1It mirrors the effect that boosting hard examples has for
supervised training (Freund and Schapire, 1997).

1, 2, . . . , k, k + 1 of the full data set and executes
local search starting from the (smoothed) model es-
timated by stepk. This truly is grammar induction.

Less is More: For standard batch training, just us-
ing simple, short sentences is not enough. They are
rare and do not reveal the full grammar. We find a
“sweet spot” — sentence lengths that are neither too
long (excluding the truly daunting examples) nor too
few (supplying enough accessible information), us-
ing Baby Steps’ learning curve as a guide. We train
where it flattens out, since remaining sentences con-
tribute little (incremental) educational value.2

Leapfrog: As an alternative to discarding data, a
better use of resources is to combine the results of
batch and iterative training up to the sweet spot data
gradation, then iterate with a large step size.

3 Related Work

Two types of scaffolding for guiding language learn-
ing debuted in Elman’s (1993) experiments with
“starting small”: data complexity (restricting input)
and model complexity (restricting memory). In both
cases, gradually increasing complexity allowed ar-
tificial neural networks to master a pseudo-natural
grammar they otherwise failed to learn. Initially-
limited capacity resembled maturational changes in
working memory and attention span that occur over
time in children (Kail, 1984), in line with the “less
is more” proposal (Newport, 1988; 1990). Although
Rohde and Plaut (1999) failed to replicate this3 re-
sult with simple recurrent networks, other machine
learning techniques reliably benefit from scaffolded
model complexity on a variety of language tasks.
In word-alignment, Brown et al. (1993) used IBM
Models 1-4 as “stepping stones” to training Model 5.
Other prominent examples include “coarse-to-fine”

2This is akin to McClosky et al.’s (2006) “Goldilocks effect.”
3Worse, they found that limiting inputhindered language

acquisition. And making the grammar more English-like (by
introducing and strengthening semantic constraints),increased
the already significant advantage for “starting large!” With it-
erative training invoking the optimizer multiple times, creating
extra opportunities to converge, Rohde and Plaut (1999) sus-
pected that Elman’s (1993) simulations simply did not allow
networks exposed exclusively to complex inputs sufficient train-
ing time. Our extremely generous, low termination threshold
for EM (see§5.1) addresses this concern. However, given the
DMV’s purely syntactic POS tag-based approach (see§5), it
would be prudent to re-test Baby Steps with a lexicalized model.
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approaches to parsing, translation and speech recog-
nition (Charniak and Johnson, 2005; Charniak et al.,
2006; Petrov et al., 2008; Petrov, 2009), and re-
cently unsupervised POS tagging (Ravi and Knight,
2009). Initial models tend to be particularly simple,4

and each refinement towards a full model introduces
only limited complexity, supporting incrementality.

Filtering complex data, the focus of our work,
is unconventional in natural language processing.
Such scaffolding qualifies asshaping — a method
of instruction (routinely exploited in animal train-
ing) in which the teacher decomposes a complete
task into sub-components, providing an easier path
to learning. When Skinner (1938) coined the term,
he described it as a “method of successive approx-
imations.” Ideas that gradually make a task more
difficult have been explored in robotics (typically,
for navigation), with reinforcement learning (Singh,
1992; Sanger, 1994; Saksida et al., 1997; Dorigo
and Colombetti, 1998; Savage, 1998; Savage, 2001).
Recently, Krueger and Dayan (2009) showed that
shaping speeds up language acquisition and leads
to better generalization in abstract neural networks.
Bengio et al. (2009) confirmed this for deep de-
terministic and stochastic networks, using simple
multi-stagecurriculum strategies. They conjectured
that a well-chosen sequence of training criteria —
different sets of weights on the examples — could
act as a continuation method (Allgower and Georg,
1990), helping find better local optima for non-
convex objectives. Elman’s learners constrained the
peaky solution space by focusing on just the right
data (simple sentences that introduced basic repre-
sentational categories) at just the right time (early
on, when their plasticity was greatest). Self-shaping,
they simplified tasks through deliberate omission (or
misunderstanding). Analogously, Baby Steps in-
duces an early structural locality bias (Smith and
Eisner, 2006), then relaxes it, as if annealing (Smith
and Eisner, 2004). Its curriculum of binary weights
initially discards complex examples responsible for
“high-frequency noise,” with earlier, “smoothed”
objectives revealing more of the global picture.

There are important differences between our re-
sults and prior work. In contrast to Elman, we use a

4Brown et al.’s (1993) Model 1 (and, similarly, the first baby
step) has a global optimum that can be computed exactly, so that
no initial or subsequent parameters depend on initialization.

large data set (WSJ) of real English. Unlike Bengio
et al. and Krueger and Dayan, we shape a parser, not
a language model. Baby Steps is similar, in spirit, to
Smith and Eisner’s methods. Deterministic anneal-
ing (DA) shares nice properties with Baby Steps,
but performs worse than EM for (constituent) pars-
ing; Baby Steps handedly defeats standard training.
Structural annealing works well, but requires a hand-
tuned annealing schedule and direct manipulation of
the objective function; Baby Steps works “out of the
box,” its locality biases a natural consequence of a
complexity/data-guided tour of optimization prob-
lems. Skewed DA incorporates a good initializer
by interpolating between two probability distribu-
tions, whereas our hybrid, Leapfrog, admits multi-
ple initializers by mixing structures instead. “Less
is More” is novel and confirms the tacit consensus
implicit in training on small data sets (e.g., WSJ10).

4 Data Sets and Metrics

Klein and Manning (2004) both trained and tested
the DMV on the same customized subset (WSJ10)
of Penn English Treebank’s Wall Street Journal por-
tion (Marcus et al., 1993). Its 49,208 annotated
parse trees were pruned5 down to 7,422 sentences
of at most 10 terminals, spanning 35 unique POS
tags. Following standard practice, automatic “head-
percolation” rules (Collins, 1999) were used to con-
vert the remaining trees into dependencies. Forced
to produce a single “best” parse, their algorithm
was judged on accuracy: itsdirected score was the
fraction of correct dependencies; a more flattering6

undirected score was also used. We employ the
same metrics, emphasizing directed scores, and gen-
eralize WSJk to be the subset of pre-processed sen-
tences with at mostk terminals. Our experiments fo-
cus onk ∈ {1, . . . , 45}, but we also test on WSJ100
and Section 23 of WSJ∞ (the entire WSJ), as well as
the held-out Brown100 (similarly derived from the
Brown corpus (Francis and Kucera, 1979)). See Fig-
ure 1 for these corpora’s sentence and token counts.

5Stripped of all empty sub-trees, punctuation, and terminals
(tagged# and$) not pronounced where they appear, those sen-
tences still containing more than ten tokens were thrown out.

6Ignoring polarity of parent-child relations partially ob-
scured effects of alternate analyses (systematic choices between
modals and main verbs for heads of sentences, determiners for
noun phrases, etc.) and facilitated comparison with prior work.
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Corpus Sentences POS Tokens Corpus Sentences POS Tokens
WSJ1 159 159 WSJ13 12,270 110,760
WSJ2 499 839 WSJ14 14,095 136,310
WSJ3 876 1,970 WSJ15 15,922 163,715
WSJ4 1,394 4,042 WSJ20 25,523 336,555
WSJ5 2,008 7,112 WSJ25 34,431 540,895
WSJ6 2,745 11,534 WSJ30 41,227 730,099
WSJ7 3,623 17,680 WSJ35 45,191 860,053
WSJ8 4,730 26,536 WSJ40 47,385 942,801
WSJ9 5,938 37,408 WSJ45 48,418 986,830
WSJ10 7,422 52,248 WSJ100 49,206 1,028,054
WSJ11 8,856 68,022 Section 23 2,353 48,201
WSJ12 10,500 87,750 Brown100 24,208 391,796 5 10 15 20 25 30 35 40 45
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Figure 1: Sizes of WSJ{1, . . . , 45, 100}, Section 23 of WSJ∞ and Brown100.

NNS VBD IN NN ♦

Payrolls fell in September .

P = (1−

0
z }| {

PSTOP(⋄, L, T)) × PATTACH(⋄, L, VBD)
× (1− PSTOP(VBD, L, T)) × PATTACH(VBD, L, NNS)
× (1− PSTOP(VBD, R, T)) × PATTACH(VBD, R, IN)
× (1− PSTOP(IN, R, T)) × PATTACH(IN, R, NN)
× PSTOP(VBD, L, F) × PSTOP(VBD, R, F)
× PSTOP(NNS, L, T) × PSTOP(NNS, R, T)
× PSTOP(IN, L, T) × PSTOP(IN, R, F)
× PSTOP(NN, L, T) × PSTOP(NN, R, T)
× PSTOP(⋄, L, F)
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Figure 2: A simple dependency structure for a short sen-
tence and its probability, as factored by the DMV.

5 New Algorithms for the Classic Model

The DMV (Klein and Manning, 2004) is a single-
state head automata model (Alshawi, 1996) over lex-
ical word classes{cw} — POS tags. Its generative
story for a sub-tree rooted at a head (of classch) rests
on three types of independent decisions: (i) initial
directiondir ∈ {L, R} in which to attach children, via
probability PORDER(ch); (ii) whether to sealdir, stop-
ping with probability PSTOP(ch, dir, adj), conditioned
on adj ∈ {T, F} (true iff consideringdir’s first, i.e.,
adjacent, child); and (iii) attachments (of classca),
according toPATTACH(ch, dir, ca). This produces only
projective trees.7 A root token♦ generates the head
of a sentence as its left (and only) child. Figure 2
displays an example that ignores (sums out)PORDER.

The DMV lends itself to unsupervised learn-

7Unlike spanning tree algorithms (McDonald et al., 2005),
DMV’s chart-based method disallows crossing dependencies.

ing via inside-outside re-estimation (Baker, 1979).
Klein and Manning did not use smoothing and
started with an “ad-hoc harmonic” completion: aim-
ing for balanced trees, non-root heads attached de-
pendents in inverse proportion to (a constant plus)
their distance;♦ generated heads uniformly at ran-
dom. This non-distributional heuristic created favor-
able initial conditions that nudged EM towards typi-
cal linguistic dependency structures.

5.1 Algorithm #0: Ad-Hoc∗

— A Variation on Original Ad-Hoc Initialization

Since some of the important implementation details
are not available in the literature (Klein and Man-
ning, 2004; Klein, 2005), we had to improvise ini-
tialization and terminating conditions. We suspect
that our choices throughout this section do not match
Klein and Manning’s actual training of the DMV.

We use the following ad-hoc harmonic scores (for
all tokens other than♦): P̃ORDER ≡ 1/2;

P̃STOP ≡ (ds + δs)
−1 = (ds + 3)−1, ds ≥ 0;

P̃ATTACH ≡ (da + δa)−1 = (da + 2)−1, da ≥ 1.

Integersd{s,a} are distances from heads to stopping
boundaries and dependents.8 We initialize train-
ing by producing best-scoring parses of all input
sentences and converting them into proper proba-
bility distributions PSTOP and PATTACH via maximum-
likelihood estimation (a single step of Viterbi train-
ing (Brown et al., 1993)). Since left and right chil-
dren are independent, we dropPORDER altogether, mak-

8Constantsδ{s,a} come from personal communication.
Note thatδs is one higher than is strictly necessary to avoid both
division by zero and determinism;δa could have been safely ze-
roed out, since we never compute1− PATTACH (see Figure 2).
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ing “headedness” deterministic. Our parser care-
fully randomizes tie-breaking, so that all parse trees
having the same score get an equal shot at being
selected (both during initialization and evaluation).
We terminate EM when a successive change in over-
all per-token cross-entropy drops below2−20 bits.

5.2 Algorithm #1: Baby Steps
— An Initialization-Independent Scaffolding

We eliminate the need for initialization by first train-
ing on a trivial subset of the data — WSJ1; this
works, since there is only one (the correct) way to
parse a single-token sentence. We plug the resulting
model into training on WSJ2 (sentences of up to two
tokens), and so forth, building up to WSJ45.9 This
algorithm is otherwise identical to Ad-Hoc∗, with
the exception that it re-estimates each model using
Laplace smoothing, so that earlier solutions could
be passed to next levels, which sometimes contain
previously unseen dependent and head POS tags.

5.3 Algorithm #2: Less is More
— Ad-Hoc∗ where Baby Steps Flatlines

We jettison long, complex sentences and deploy Ad-
Hoc∗’s initializer and batch training at WSJk̂∗ — an
estimate of the sweet spot data gradation. To find
it, we track Baby Steps’ successive models’ cross-
entropies on the complete data set, WSJ45. An ini-
tial segment of rapid improvement is separated from
the final region of convergence by aknee — points
of maximum curvature (see Figure 3). We use an
improved10 L method (Salvador and Chan, 2004) to
automatically locate this area of diminishing returns.
Specifically, we determine its end-points[k0, k

∗] by
minimizing squared error, estimatinĝk0 = 7 and
k̂∗ = 15. Training at WSJ15 just misses the plateau.

5.4 Algorithm #3: Leapfrog
— A Practical and Efficient Hybrid Mixture

Cherry-picking the best features of “Less is More”
and Baby Steps, we begin by combining their mod-

9Its 48,418 sentences (see Figure 1) cover 94.4% of all sen-
tences in WSJ; the longest of the missing 790 has length 171.

10Instead of iteratively fitting a two-segment form and adap-
tively discarding its tail, we usethree line segments, applying
ordinary least squares to the first two, but requiring the third to
be horizontal and tangent to a minimum. The result is abatch
optimization routine that returns aninterval for the knee, rather
than a point estimate (see Figure 3 for details).
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Figure 3: Cross-entropy on WSJ45 after each baby step, a
piece-wise linear fit, and an estimated region for the knee.

els at WSĴk∗. Using one best parse from each,
for every sentence in WSJk̂∗, the base case re-
estimates a new model from amixture of twice the
normal number of trees; inductive steps leap overk̂∗

lengths, conveniently ending at WSJ45, and estimate
their initial models by applying a previous solution
to a new input set. Both follow up the single step of
Viterbi training with at most five iterations of EM.

Our hybrid makes use of two good (condition-
ally) independent initialization strategies and exe-
cutes many iterations of EM where that is cheap —
at shorter sentences (WSJ15 and below). It then in-
creases the step size, training just three more times
(at WSJ{15, 30, 45}) and allowing only a few (more
expensive) iterations of EM. Early termination im-
proves efficiency and regularizes these final models.

5.5 Reference Algorithms
— Baselines, a Skyline and Published Art

We carve out the problem space using two extreme
initialization strategies: (i) the uninformed uniform
prior, which serves as a fair “zero-knowledge” base-
line for comparing uninitialized models; and (ii) the
maximum-likelihood “oracle” prior, computed from
reference parses, which yields askyline (a reverse
baseline) — how well any algorithm that stumbled
on the true solution would fare at EM’s convergence.

In addition to citing Klein and Manning’s (2004)
results, we compare our accuracies on Section 23
of WSJ∞ to two state-of-the-art systems and past
baselines (see Table 2). Headden et al.’s (2009)
lexicalized EVG is the best on short sentences, but
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Figure 4: Directed and undirected accuracy scores attainedby the DMV, when trained and tested on the same gradation
of WSJ, for several different initialization strategies. Green circles mark Klein and Manning’s (2004) published scores;
red, violet and blue curves represent the supervised (maximum-likelihood oracle) initialization, Baby Steps, and the
uninformed uniform prior. Dotted curves reflect starting performance, solid curves register performance at EM’s
convergence, and the arrows connecting them emphasize the impact of learning.
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Figure 5: Directed accuracies for Ad-Hoc∗ (shown in
green) and Leapfrog (in gold); all else as in Figure 4(a).

its performance is unreported for longer sentences,
for which Cohen and Smith’s (2009) seem to be
the highest published scores; we include their in-
termediate results that preceded parameter-tying —
Bayesian models with Dirichlet and log-normal pri-
ors, coupled with both Viterbi and minimum Bayes-
risk (MBR) decoding (Cohen et al., 2008).

6 Experimental Results

We packed thousands of empirical outcomes into the
space of several graphs (Figures 4, 5 and 6). The col-
ors (also in Tables 1 and 2) correspond to different
initialization strategies — to a first approximation,

the learning algorithm was held constant (see§5).
Figures 4 and 5 tell one part of our story. As data

sets increase in size, training algorithms gain access
to more information; however, since in this unsu-
pervised setting training and test sets are the same,
additional longer sentences make for substantially
more challenging evaluation. To control for these
dynamics, we applied Laplace smoothing to all (oth-
erwise unsmoothed) models and re-plotted their per-
formance, holding several test sets fixed, in Figure 6.

We report undirected accuracies parenthetically.

6.1 Result #1: Baby Steps

Figure 4 traces out performance on the training set.
Klein and Manning’s (2004) published scores ap-
pear as dots (Ad-Hoc) at WSJ10: 43.2% (63.7%).
Baby Steps achieves 53.0% (65.7%) by WSJ10;
trained and tested on WSJ45, it gets 39.7% (54.3%).
Uninformed, classic EM learns little about directed
dependencies: it improves only slightly, e.g., from
17.3% (34.2%) to 19.1% (46.5%) on WSJ45 (learn-
ing some of the structure, as evidenced by its undi-
rected scores), but degrades with shorter sentences,
where its initial guessing rate is high. In the case
of oracle training, we expected EM to walk away
from supervised solutions (Elworthy, 1994; Meri-
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Figure 6: Directed accuracies attained by the DMV, when trained at various gradations of WSJ, smoothed, then tested
against fixed evaluation sets — WSJ{10, 40}; graphs for WSJ{20, 30}, not shown, are qualitatively similar to WSJ40.

aldo, 1994; Liang and Klein, 2008), but the ex-
tent of its drops is alarming, e.g., from the super-
vised 69.8% (72.2%) to the skyline’s 50.6% (59.5%)
on WSJ45. In contrast, Baby Steps’ scores usu-
ally do not change much from one step to the
next, and where its impact of learning is big (at
WSJ{4, 5, 14}), it is invariably positive.

6.2 Result #2: Less is More

Ad-Hoc∗’s curve (see Figure 5) suggests how Klein
and Manning’s Ad-Hoc initializer may have scaled
with different gradations of WSJ. Strangely, our im-
plementation performs significantly above their re-
ported numbers at WSJ10: 54.5% (68.3%) is even
slightly higher than Baby Steps; nevertheless, given
enough data (from WSJ22 onwards), Baby Steps
overtakes Ad-Hoc∗, whose ability to learn takes a se-
rious dive once the inputs become sufficiently com-
plex (at WSJ23), and never recovers. Note that Ad-
Hoc∗’s biased prior peaks early (at WSJ6), eventu-
ally falls below the guessing rate (by WSJ24), yet
still remains well-positioned to climb, outperform-
ing uninformed learning.

Figure 6 shows that Baby Steps scales better with
more (complex) data — its curves do not trend
downwards. However, a good initializer induces a
sweet spot at WSJ15, where the DMV is learned
best using Ad-Hoc∗. This modeis “Less is More,”
scoring 44.1% (58.9%) on WSJ45. Curiously, even
oracle training exhibits a bump at WSJ15: once sen-
tences get long enough (at WSJ36), its performance

degrades below that of oracle training with virtually
no supervision (at the hardly representative WSJ3).

6.3 Result #3: Leapfrog

Mixing Ad-Hoc∗ with Baby Steps at WSJ15 yields
a model whose performance initially falls between
its two parents but surpasses both with a little train-
ing (see Figure 5). Leaping to WSJ45, via WSJ30,
results in our strongest model: its 45.0% (58.4%) ac-
curacy bridges half of the gap between Baby Steps
and the skyline, and at a tiny fraction of the cost.

6.4 Result #4: Generalization

Our models carry over to the larger WSJ100, Section
23 of WSJ∞, and the independent Brown100 (see
Table 1). Baby Steps improves out of domain, con-
firming that shaping generalizes well (Krueger and
Dayan, 2009; Bengio et al., 2009). Leapfrog does
best across the board but dips on Brown100, despite
its safe-guards against over-fitting.

Section 23 (see Table 2) reveals, unexpectedly,
that Baby Steps would have been state-of-the-art in
2008, whereas “Less is More” outperforms all prior
work on longer sentences. Baby Steps is competi-
tive with log-normal families (Cohen et al., 2008),
scoring slightly better on longer sentences against
Viterbi decoding, though worse against MBR. “Less
is More” beats state-of-the-art on longer sentences
by close to 2%; Leapfrog gains another 1%.
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Ad-Hoc∗ Baby Steps Leapfrog Ad-Hoc∗ Baby Steps Leapfrog
Section 23 44.1(58.8) 39.2(53.8) 43.3(55.7) 31.5(51.6) 39.4(54.0) 45.0(58.4)
WSJ100 43.8(58.6) 39.2(53.8) 43.3(55.6) @15 31.3(51.5) 39.4(54.1) 44.7(58.1) @45
Brown100 43.3(59.2) 42.3(55.1) 42.8(56.5) 32.0(52.4) 42.5(55.5) 43.6(59.1)

Table 1: Directed and undirected accuracies on Section 23 ofWSJ∞, WSJ100 and Brown100 for Ad-Hoc∗, Baby
Steps and Leapfrog, trained at WSJ15 and WSJ45.

Decoding WSJ10 WSJ20 WSJ∞

Attach-Right (Klein and Manning, 2004) — 38.4 33.4 31.7
DMV Ad-Hoc (Klein and Manning, 2004) Viterbi 45.8 39.1 34.2

Dirichlet (Cohen et al., 2008) Viterbi 45.9 39.4 34.9
Ad-Hoc (Cohen et al., 2008) MBR 46.1 39.9 35.9
Dirichlet (Cohen et al., 2008) MBR 46.1 40.6 36.9
Log-Normal Families (Cohen et al., 2008) Viterbi 59.3 45.1 39.0
Baby Steps (@15) Viterbi 55.5 44.3 39.2
Baby Steps (@45) Viterbi 55.1 44.4 39.4
Log-Normal Families (Cohen et al., 2008) MBR 59.4 45.9 40.5
Shared Log-Normals (tie-verb-noun) (Cohen and Smith, 2009) MBR 61.3 47.4 41.4
Bilingual Log-Normals (tie-verb-noun) (Cohen and Smith, 2009) MBR 62.0 48.0 42.2
Less is More (Ad-Hoc∗ @15) Viterbi 56.2 48.2 44.1
Leapfrog (Hybrid @45) Viterbi 57.1 48.7 45.0

EVG Smoothed (skip-val) (Headden et al., 2009) Viterbi 62.1
Smoothed (skip-head) (Headden et al., 2009) Viterbi 65.0
Smoothed (skip-head), Lexicalized (Headden et al., 2009) Viterbi 68.8

Table 2: Directed accuracies on Section 23 of WSJ{10, 20,∞ } for several baselines and recent state-of-the-art systems.

7 Conclusion

We explored three simple ideas for unsupervised de-
pendency parsing. Pace Halevy et al. (2009), we
find “Less is More” — the paradoxical result that
better performance can be attained by training with
less data, even when removing samples from the true
(test) distribution. Our small tweaks to Klein and
Manning’s approach of 2004 break through the 2009
state-of-the-art on longer sentences, when trained at
WSJ15 (the auto-detected sweet spot gradation).

The second, Baby Steps, is an elegant meta-
heuristic for optimizing non-convex training crite-
ria. It eliminates the need for linguistically-biased
manually-tuned initializers, particularly if the loca-
tion of the sweet spot is not known. This tech-
nique scales gracefully with more (complex) data
and should easily carry over to more powerful pars-
ing models and learning algorithms.

Finally, Leapfrog forgoes the elegance and metic-
ulousness of Baby Steps in favor of pragmatism.
Employing both good initialization strategies at
its disposal, and spending CPU cycles wisely, it
achieves better performance than both “Less is
More” and Baby Steps.

Future work could explore unifying these tech-
niques with other state-of-the-art approaches. It may
be useful to scaffold on both data and model com-
plexity, e.g., by increasing head automata’s number
of states (Alshawi and Douglas, 2000). We see many
opportunities for improvement, considering the poor
performance of oracle training relative to the super-
vised state-of-the-art, and in turn the poor perfor-
mance of unsupervised state-of-the-art relative to the
oracle models.11 To this end, it would be instructive
to understand both the linguistic and statistical na-
ture of the sweet spot, and to test its universality.
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