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Abstract

We present an update to UDPipe 1.0
(Straka et al., 2016), a trainable pipeline
which performs sentence segmentation,
tokenization, POS tagging, lemmatization
and dependency parsing. We provide
models for all 50 languages of UD 2.0, and
furthermore, the pipeline can be trained
easily using data in CoNLL-U format.

For the purpose of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text
to Universal Dependencies, the updated
UDPipe 1.1 was used as one of the base-
line systems, finishing as the 13th system
of 33 participants. A further improved
UDPipe 1.2 participated in the shared task,
placing as the 8th best system, while
achieving low running times and moder-
ately sized models.

The tool is available under open-source
Mozilla Public Licence (MPL) and
provides bindings for C++, Python
(through ufal.udpipe PyPI package),
Perl (through UFAL::UDPipe CPAN
package), Java and C#.

1 Introduction

The Universal Dependencies project (Nivre et al.,
2016) seeks to develop cross-linguistically consis-
tent treebank annotation of morphology and syn-
tax for many languages. The latest version of
UD (Nivre et al., 2017a) consists of 70 depen-
dency treebanks in 50 languages. As such, the
UD project represents an excellent data source
for developing multi-lingual NLP tools which per-
form sentence segmentation, tokenization, POS
tagging, lemmatization and dependency tree pars-
ing.

The goal of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal De-
pendencies (CoNLL 2017 UD Shared Task) is
to stimulate research in multi-lingual dependency
parsers which process raw text only. The overview
of the task and the results are presented in Zeman
et al. (2017).

This paper describes UDPipe (Straka et al.,
2016)1 – an open-source tool which automati-
cally generates sentence segmentation, tokeniza-
tion, POS tagging, lemmatization and dependency
trees, using UD version 2 treebanks as training
data.

The contributions of this paper are:

• Description of UDPipe 1.1 Baseline System,
which was used to provide baseline models
for CoNLL 2017 UD Shared Task and pre-
processed test sets for the CoNLL 2017 UD
Shared Task participants. UDPipe 1.1 pro-
vided a strong baseline for the task, placing
as the 13th (out of 33) best system in the of-
ficial ranking. The UDPipe 1.1 Baseline Sys-
tem is described in Section 3.
• Description of UDPipe 1.2 Participant Sys-

tem, an improved variant of UDPipe 1.1,
which was used as a contestant system in the
CoNLL 2017 UD Shared Task, finishing 8th

in the official ranking, while keeping very
low software requirements. The UDPipe 1.2
Participant System is described in Section 4.
• Evaluation of search-based oracle and sev-

eral transition-based system on UD 2.0 de-
pendency trees (Section 5).

2 Related Work

There is a number of NLP pipelines available, e.g.,
Natural Language Processing Toolkit2 (Bird et al.,

1http://ufal.mff.cuni.cz/udpipe
2NLTK, http://nltk.org
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2009) or OpenNLP3 to name a few. We designed
yet another one, UDPipe, with the aim to provide
extremely simple tool which can be trained eas-
ily using only a CoNLL-U file without additional
resources or feature engineering.

Deep neural networks have recently achieved
remarkable results in many areas of machine
learning. In NLP, end-to-end approaches were ini-
tially explored by Collobert et al. (2011). With a
practical method for precomputing word embed-
dings (Mikolov et al., 2013) and routine utiliza-
tion of recurrent neural networks (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014), deep neural
networks achieved state-of-the-art results in many
NLP areas like POS tagging (Ling et al., 2015),
named entity recognition (Yang et al., 2016) or
machine translation (Vaswani et al., 2017). The
wave of neural network parsers was started re-
cently by Chen and Manning (2014) who pre-
sented fast and accurate transition-based parser.
Many other parser models followed, employing
various techniques like stack LSTM (Dyer et al.,
2015), global normalization (Andor et al., 2016),
biaffine attention (Dozat and Manning, 2016)
or recurrent neural network grammars (Kuncoro
et al., 2016), improving LAS score in English and
Chinese dependency parsing by more than 2 points
in 2016.

3 UDPipe 1.1 Baseline System

UDPipe 1.0 (Straka et al., 2016)4 is a trainable
pipeline performing sentence segmentation, tok-
enization, POS tagging, lemmatization and depen-
dency parsing. It is fully trainable using CoNLL-U
version 1 files and the pretrained models for UD
1.2 treebanks are provided.

For the purpose of the CoNLL 2017 UD Shared
Task, we implemented a new version UDPipe 1.1
which processes CoNLL-U version 2 files. UD-
Pipe 1.1 was used as one of the baseline systems in
the shared task. UDPipe 1.1 Baseline System was
trained and tuned in the training phase of CoNLL
2017 UD Shared Task on the UD 2.0 training data
and the trained models and outputs were available
to the participants.

In this Section, we describe the UDPipe 1.1
Baseline System, focusing on the differences to
the previous version described in (Straka et al.,
2016): the tokenizer (Section 3.1), the tagger (Sec-

3https://opennlp.apache.org
4http://ufal.mff.cuni.cz/udpipe

tion 3.2), the parser (Section 3.3), the hyperparam-
eter search support (Section 3.4), the training de-
tails (Section 3.5) and evaluation (Section 3.6).

3.1 Tokenizer
In UD and in CoNLL-U files, the text is structured
on several levels – a document consists of para-
graphs composed of (possibly partial) sentences,
which are sequences of tokens. A token is also
usually a word (unit used in further morphologi-
cal and syntactic processing), but a single token
may be composed of several syntactic words (for
example, token zum consists of words zu and dem
in German). The original text can be therefore re-
constructed as a concatenation of tokens with ade-
quate spaces, but not as a concatenation of words.

Sentence Segmentation and Tokenization
Sentence segmentation and tokenization is per-
formed jointly (as it was in UDPipe 1.0) using
a single-layer bidirectional GRU network which
predicts for each character whether it is the last
one in a sentence, the last one in a token, or not
the last one in a token. Spaces are usually not al-
lowed in tokens and therefore the network does not
need to predict end-of-token before a space (it only
learns to separate adjacent tokens, like for exam-
ple Hi! or cannot).

Multi-Word Token Splitting
In UDPipe 1.0, a case insensitive dictionary was
used to split tokens into words. This approach is
beneficial if there is a fixed number of multi-word
tokens in the language (which is the case for ex-
ample in German).

In UDPipe 1.1 Baseline System we also employ
automatically generated suffix rules – a token with
a specific suffix is split, using the non-matching
part of the token as prefix of the first words, and a
fixed sequence of first word suffix and other words
(e.g, in Polish we create a rule ?łem → ?ł + em).
The rules are generated automatically by keeping
all such rules present in the training data, which do
not trigger incorrectly too often. The contribution
of suffix rules is evaluated in Section 5.

Documents and Paragraphs
We use an improved sentence segmenter in UD-
Pipe 1.1 Baseline System. The segmenter learns
sentence boundaries in the text in a standard way
as in UDPipe 1.1 Baseline System, but it omits the
sentence breaks at the end of a paragraph or a doc-
ument. The reason for excluding these boundaries
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from the training data is that the ends of para-
graphs and documents are frequently recognized
by layout (e.g. newspaper headlines) and if the
recognizer is trained to recognize these sentence
breaks, it tends to erroneously split regular sen-
tences.

Additionally, we now also mark paragraph
boundaries (recognized by empty lines) and docu-
ment boundaries (corresponding to files being pro-
cessed, storing file names as document ids) when
running the segmenter.

Spaces in Tokens
Additional feature allowed in CoNLL-U version
2 files is presence of spaces in tokens. If spaces
in tokens are allowed, the GRU tokenizer network
must be modified to predict token breaks in front
of spaces. On the other side, many UD 2.0 lan-
guages do not allow spaces in tokens (and in such
languages a space in a token might confuse the
following systems in the pipeline), therefore, it is
configurable whether spaces in tokens are allowed,
with the default being to allow spaces in tokens if
there is any token with spaces in the training data.

Precise Reconstruction of Spaces
Unfortunately, neither CoNLL-U version 1 nor
version 2 provide a standardized way of storing
inter-token spaces which would allow reconstruct-
ing the original plain text. Therefore, UDPipe 1.1
Baseline System supports several UDPipe-specific
MISC fields that are used for this purpose.

CoNLL-U defines SpaceAfter=No MISC
feature which denotes that a given to-
ken is not followed by a space. We ex-
tend this scheme in a compatible way
by introducing SpacesAfter=spaces and
SpacesBefore=spaces fields. These fields
store the spaces following and preceding this
token, with SpacesBefore by default empty and
SpacesAfter being by default empty or one
space depending on SpaceAfter=No presence.
Therefore, these fields are not needed if tokens
are separated by no space or a single space.
The spaces are encoded by a means of a C-like
escaping mechanism, with escape sequences \s,
\t, \r, \n, \p, \\ for space, tab, CF, LF, | and \

characters, respectively.
If spaces in tokens are allowed, these spaces

cannot be represented faithfully in the FORM
field which disallows tabs and new line charac-
ters. Therefore, UDPipe utilizes an additional

MISC field SpacesInToken=token with spaces

representing the token with original spaces. Once
again, with the default value being the value of the
FORM field, the field is needed only if the token
spaces cannot be represented in the FORM field.

All described MISC fields are generated au-
tomatically by UDPipe 1.1 Baseline System tok-
enizer, with SpacesBefore used only at the begin-
ning of a sentence.

Furthermore, we also provide an optional way
of storing the document-level character offsets of
all tokens, using TokenOffset MISC field. The
values of this field employ Python-like start:end
format.

Detokenization
To train the tokenizer, the original plain texts of
the CoNLL-U files are required. These plain texts
can be reconstructed using the SpaceAfter=No

feature. However, very little UD version 1 cor-
pora contains this information. Therefore, UDPipe
1.0 offers a way of generating these features us-
ing a different raw text in the concerned language
(Straka et al., 2016).

Fortunately, most UD 2.0 treebanks do include
the SpaceAfter=No feature. We perform deto-
kenization only for Dannish, Finnish-FTB and
Slovenian-SST.

Inference
When employing the segmenter and tokenizer
GRU network during inference, it is important to
normalize spaces in the given text. The reason is
that during training, tokens were either adjacent or
separated by a single space, so we need to modify
the network input during inference accordingly.

During inference, we precompute as much net-
work operations on character embeddings as pos-
sible5 (to be specific, we cache 6 matrix prod-
ucts for every character embedding in each GRU).
Consequently, the inference is almost twice as fast.

3.2 Tagger
The tagger utilized by UDPipe 1.1 Baseline Sys-
tem is nearly identical to the previous version in
UDPipe 1.0. A guesser generates several (UPOS,
XPOS, FEATS) triplets for each word according to
its last four characters, and an averaged perceptron
tagger with a fixed set of features disambiguates
the generated tags (Straka et al., 2016; Straková
et al., 2014).

5Similarly to Devlin et al. (2014).
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The lemmatizer is analogous. A guesser pro-
duces (lemma rule, UPOS) pairs, where the lemma
rule generates a lemma from a word by stripping
some prefix and suffix and prepending and ap-
pending new prefix and suffix. To generate cor-
rect lemma rules, the guesser generates the results
not only according to the last four characters of a
word, but also using word prefix. Again, the dis-
ambiguation is performed by an averaged percep-
tron tagger.

We prefer to perform lemmatization and POS
tagging separately (not as a joint task), because we
found out that utilization of two different guessers
and two different feature sets improves the perfor-
mance of our system (Straka et al., 2016).

The only change in UDPipe 1.1 Baseline Sys-
tem is a possibility to store lemmas not only as
lemma rules, i.e., relatively, but also as “absolute”
lemmas. This change was required by the fact that
some languages such as Persian contain a lot of
empty lemmas which are difficult to encode using
relative lemma rules, and because Latin-PROIEL
treebank uses greek.expression lemma for all
Greek forms.

3.3 Dependency Parsing

UDPipe 1.0 utilizes fast transition-based neural
dependency parser. The parser is based on a sim-
ple neural network with just one hidden layer and
without any recurrent connections, using locally-
normalized scores.

The parser offers several transition systems –
a projective arc-standard system (Nivre, 2008),
partially non-projective link2 system (Gómez-
Rodrı́guez et al., 2014) and a fully non-projective
swap system (Nivre, 2009). Several transition ora-
cles are implemented – static oracles, dynamic or-
acle for the arc-standard system (Goldberg et al.,
2014) and a search-based oracle (Straka et al.,
2015). Detailed description of the parser archi-
tecture and transition systems and oracles can be
found in Straka et al. (2016) and Straka et al.
(2015).

The parser makes use of FORM, UPOS, FEATS
and DEPREL embeddings. The form embeddings
are precomputed with word2vec using the train-
ing data, the other embeddings are initialized ran-
domly, and all embeddings are updated during
training.

We again precompute as much network opera-
tions as possible for the input embeddings. How-

ever, to keep memory requirements and loading
times reasonable, we do so only for 1000 most fre-
quent embeddings of every type.

Because the CoNLL 2017 UD Shared Task did
not allow sentences with multiple roots, we mod-
ified all the transition systems in UDPipe 1.1 to
generate only one root node and to use the root

dependency relation only for this node.

3.4 Hyperparameter Search Support
All three described components employ several
hyperparameters which can improve performance
if tuned correctly. To ease up the process, UD-
Pipe offers random hyperparameter search for all
the components – the run=number option during
training generates pseudorandom but determinis-
tic values for predefined hyperparameters. The hy-
perparameters are supposed to be tuned for every
component individually, and then merged.

3.5 Training the UDPipe 1.1 Baseline System
When developing the UDPipe 1.1 Baseline System
in the training phase of CoNLL 2017 UD Shared
Task, the testing data were not yet available for the
participants. Therefore a new data split was cre-
ated from the available training and development
data: the performance of the models was evaluated
on the development data, and part of the training
data was put aside and used to tune the hyperpa-
rameters. This baselinemodel-split of the UD 2.0
data is provided together with the baseline modes
from Straka (2017).

The following subsections describe the details
of training the UDPipe 1.1 Baseline System.

Tokenizer
The segmenter and tokenizer network employs
character embeddings and GRU cells of dimen-
sion 24. The network was trained using dropout
both before and after the recurrent units, using the
Adam optimization algorithm (Kingma and Ba,
2014). Suitable batch size, dropout probability,
learning rate and number of training epochs was
tuned on the tune set.

Tagger
The tagger and the lemmatizer do not use any hy-
perparameters which require tuning. The guesser
hyperparameter were tuned on the tune set.

Parser
The parser network employs form embeddings of
dimension 50, and UPOS, FEATS and DEPREL
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embeddings of dimension 20. The hidden layer
has dimension 200, batch consists of 10 words and
the network was trained for 10 iterations. The suit-
able transition system, oracle, learning rate and L2
regularization was chosen to maximize the accu-
racy on the tune set.

3.6 Evaluation of the UDPipe 1.1 Baseline
System

There are three testing collections in CoNLL 2017
UD Shared Task: UD 2.0 test data, new parallel
treebank (PUD) sets, and four surprise languages.

The UDPipe 1.1 Baseline System models were
completely trained, released and “frozen” on the
UD 2.0 training and development data with a new
split (see the previous Section 3.5) already in the
training phase of the CoNLL 2017 UD Shared Task
on the UD 2.0 training data, unlike the participant
systems, which could use the full training data for
training and development data for tuning.

We used the UDPipe 1.1 Baseline System mod-
els for evaluation of the completely new parallel
treebank (PUD) set and completely new surprise
languages in the following way:

For the new parallel treebank sets we utilized
the “main” treebank for each language (e.g., for
Finish fi instead of fi ftb). This arbitrary de-
cision was a lucky one – after the shared task eval-
uation, the performance on the parallel treebanks
was shown to be significantly worse if different
treebanks than the “main” were used (even if they
were larger or provided higher LAS on their own
test set). The reason seem to be the inconsisten-
cies among the treebanks of the same language –
the Universal Dependencies are yet not so univer-
sal as everyone would like.

To parse the surprise languages, we employed
a baseline model which resulted in highest LAS
F1-score on the surprise language sample data –
resulting in Finnish FTB, Polish, Finnish FTB and
Slovak models for the surprise languages Buryat,
Kurmanji, North Sámi and Upper Sorbian, respec-
tively. Naturally, most words of a surprise lan-
guage are not recognized by a baseline model for
a different language. Conveniently, the UPOS tags
and FEATS are shared across languages, allowing
the baseline model to operate similarly to a delex-
icalized parser.

4 UDPipe 1.2 Participant System

We further updated the UDPipe 1.1 Baseline Sys-
tem to participate in CoNLL 2017 UD Shared Task
with an improved UDPipe 1.2 Participant System.

As participants of the shared task, we trained
the system using the whole training data and
searched for hyperparameters using the develop-
ment data (instead of using the baselinemodel-
split described in Section 3.5). Although the data
size increase is not exactly a change in the sys-
tem itself, it improves performance, especially for
smaller treebanks.

4.1 Hyperparameter Changes

While tokenization and segmentation is straight-
forward in some languages, it is quite complex in
others (notably in Japanese and Chinese, which
do not use spaces for word separation, or in Viet-
namese, in which many tokens contain spaces). In
order to improve the performance on these lan-
guages we increased the embedding dimension
and GRU cell dimension in the tokenizer from 24
to 64.

We increased form embedding dimension in the
parser from 50 to 64 (larger dimensions showed no
more improvements on the development set) and
also trained the parser for 20 iterations over the
training data instead of 10.

Furthermore, instead of using beam of size 5
during parsing as in UDPipe 1.1 Baseline System,
we tuned the beam size individually for each tree-
bank, choosing 5, 10, 15 or 20 according to result-
ing LAS on a development set.

4.2 Merging Treebanks of the Same
Language

For several languages, there are multiple tree-
banks available in the UD 2.0 collection. Ide-
ally, one would merge all training data of all tree-
banks of a given language. However, accord-
ing to our preliminary experiments, the annota-
tion is not perfectly consistent even across tree-
banks of the same language. Still, additional train-
ing data, albeit imperfect, could benefit small tree-
banks.

We therefore attempt to exploit these multiplex
treebanks by enriching each treebank’s training
data with training data from other treebanks of the
same language. Given a treebank for which an-
other treebanks of the same language exist, we
evaluate performance of several such expansions
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Treebank
Maximum sentence Changed sentence boundary Every sentence

length log-probability log-probability
Gothic 20 -0.5 -0.9
Latin-PROIEL 25 -0.4 -0.7
Slovenian-SST 15 -0.7 -0.9

Table 1: Hyperparameters for joint segmentation and parsing.

and choose the best according to LAS score on
the development data of the treebank in question.
We extend the original training data by adding ran-
dom sentences from the additional treebanks of the
same language – we consider subsets containing
1
4 , 1

2 , 1 and 2 times the size of the original tree-
bank.

4.3 Joint Sentence Segmentation and Parsing

Some treebanks are very difficult to segment
into sentences due to missing punctuation, which
harms the parser performance. We segment three
smallest treebanks of this kind (namely Gothic,
Latin-PROIEL and Slovenian-SST) jointly with
the parser, by choosing such sentence segmen-
tation which maximizes likelihood of their parse
trees.

In order to determine the segmentation with
maximum parsing likelihood, we evaluate every
possible segmentation with sentences up to a given
maximum length L. Because likelihoods of parse
trees are independent, we can utilize dynamic pro-
gramming and find the best segmentation in poly-
nomial time by parsing sentences of lengths 1 to
L at every location in the original text. Therefore,
the procedure has the same complexity as parsing
text which is circa L2/2 times longer than the orig-
inal one.

Additionally, we incorporate the segmentation
suggested by the tokenizer in the likelihood of
the parse trees – we multiply the tree likelihood
by a fixed probability for each sentence bound-
ary different than the one returned by the tok-
enizer.

However, if a transition-based parser is used,
the optimum solution for the algorithm described
so far would probably be to segment the text into
one-token sentences, due to the fact that for a sin-
gle word there is only one possible sequence of
transitions (to make the word a root node), which
has therefore probability one. Consequently, we
introduce a third hyperparameter, which is an ad-
ditional “cost” for every sentence.

We tuned the three described hyperparameters
for every treebank independently to maximize
LAS score on development set. The chosen hy-
perparameter values are shown in Table 1.

We expect graphical parsing models to ben-
efit even more from this kind of joint segmen-
tation – for every word, one can compute the
probability distribution of attaching it as a depen-
dent to all words within a distance of L (includ-
ing the word itself, which represents the word
being a root node). Then, the likelihood of
a single-word sentence would not be one, but
would take into account the possibility of at-
taching the word as a dependent to every near
word.

5 Experiments and Results

The official CoNLL 2017 UD Shared Task evalua-
tion was performed using a TIRA platform (Pot-
thast et al., 2014), which provided virtual ma-
chines for every participants’ systems. During test
data evaluation, the machines were disconnected
from the internet, and reset after the evaluation
finished – this way, the entire test sets were kept
private even during the evaluation.

In addition to official results, we also report re-
sults of supplementary experiments. These were
evaluated after the shared task, using the released
test data (Nivre et al., 2017b). All results are pro-
duced using the official evaluation script.

Because only plain text (and not gold tokeniza-
tion) is used as input, all results are in fact F1-
scores and always take tokenization performance
into account.

The complete UDPipe 1.2 Participant System
scores are shown in Table 2. We also include LAS
F1-score of the UDPipe 1.1 Baseline System for
reference. Note that due to time constraints, some
UDPipe 1.2 Participant System submitted models
did not generate any XPOS and lemmas. In these
cases, we show XPOS and lemmatization results
using post-competition models and typeset them
in italic.
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Treebank UDPipe 1.2 Participant System Baseline
Tokens Words Sents Words UPOS XPOS Feats AllTags Lemmas UAS LAS LAS

Ancient Greek 99.96 99.96 98.73 99.96 85.55 43.69 73.30 43.67 82.89 65.37 57.39 56.04
Ancient Greek-PROIEL 100.00 100.00 47.09 100.00 95.60 93.34 87.66 84.85 92.73 71.72 66.51 65.22
Arabic 99.98 93.71 81.77 93.71 88.26 83.27 83.40 82.08 87.34 71.69 66.06 65.30
Basque 99.96 99.96 99.50 99.96 92.33 99.96 87.25 84.66 93.49 75.59 70.45 69.15
Bulgarian 99.92 99.92 92.85 99.92 97.72 94.57 95.55 94.01 94.60 88.82 84.92 83.64
Catalan 99.97 99.97 99.03 99.97 98.00 98.00 97.20 96.56 97.87 88.69 85.53 85.39
Chinese 89.55 89.55 98.20 89.55 83.47 83.38 88.28 82.13 89.54 61.81 57.89 57.40
Croatian 99.90 99.90 95.56 99.90 95.88 99.90 84.34 83.43 94.33 83.73 77.73 77.18
Czech 99.93 99.93 92.30 99.93 98.23 92.71 91.97 91.60 97.82 86.73 83.19 82.87
Czech-CAC 99.97 99.96 100.00 99.96 98.34 91.92 90.53 90.36 97.31 88.21 84.40 82.46
Czech-CLTT 99.34 99.34 94.19 99.34 95.49 88.07 86.14 85.04 96.79 80.52 76.69 71.64
Danish 99.60 99.60 78.97 99.60 95.28 99.60 94.37 93.25 94.51 78.91 75.28 73.38
Dutch 99.80 99.80 76.95 99.80 91.33 88.05 89.23 86.94 89.77 76.50 70.52 68.90
Dutch-LassySmall 99.99 99.99 81.83 99.99 97.43 99.99 97.17 96.39 97.99 82.76 80.15 78.15
English 99.03 99.03 75.33 99.03 93.50 92.88 94.44 91.48 96.10 80.34 77.25 75.84
English-LinES 99.92 99.92 87.40 99.92 94.87 92.01 99.39 90.41 98.34 79.06 74.92 72.94
English-ParTUT 99.57 99.55 98.40 99.55 93.41 91.92 91.45 89.83 96.39 81.13 76.89 73.64
Estonian 99.89 99.89 93.66 99.89 87.60 89.98 81.14 78.99 80.96 68.65 60.01 58.79
Finnish 99.69 99.69 86.75 99.69 94.49 95.68 91.42 90.35 86.49 80.74 77.26 73.75
Finnish-FTB 99.97 99.96 85.54 99.96 92.28 91.05 92.53 89.41 88.68 79.69 75.31 74.03
French 99.76 98.88 94.58 98.88 95.49 98.88 95.42 94.26 96.59 84.09 80.50 80.75
French-ParTUT 99.85 98.97 97.76 98.97 95.38 85.35 91.23 82.06 94.87 84.03 80.17 77.38
French-Sequoia 99.76 99.06 84.60 99.06 95.63 99.06 94.74 93.59 96.82 84.06 81.35 79.98
Galician 99.93 99.93 96.18 99.93 96.93 96.44 99.70 96.08 96.93 80.95 77.73 77.31
Galician-TreeGal 99.62 98.66 85.35 98.66 91.08 87.70 89.84 86.90 92.56 71.59 66.31 65.82
German 99.67 99.67 79.35 99.67 90.72 94.65 80.46 76.26 95.38 74.15 68.61 69.11
Gothic 100.00 100.00 24.12 100.00 94.32 94.87 87.06 85.03 92.45 69.26 62.80 59.81
Greek 99.87 99.87 90.00 99.87 95.35 95.35 89.89 88.62 94.44 84.31 80.67 79.26
Hebrew 99.98 85.16 100.00 85.16 80.87 80.87 77.57 76.78 79.58 62.06 57.86 57.23
Hindi 100.00 100.00 99.20 100.00 95.75 94.82 90.12 87.57 98.00 91.45 87.28 86.77
Hungarian 99.81 99.81 95.54 99.81 90.80 99.81 70.59 69.57 88.40 72.36 66.54 64.30
Indonesian 100.00 100.00 91.73 100.00 93.43 100.00 99.52 93.42 100.00 81.67 75.47 74.61
Irish 99.40 99.40 94.78 99.40 88.86 87.90 76.27 73.53 85.45 73.10 62.87 61.52
Italian 99.91 99.83 97.11 99.83 97.31 97.06 97.20 96.26 97.34 88.62 86.11 85.28
Japanese 90.97 90.97 95.01 90.97 88.19 90.97 90.95 88.19 90.19 75.81 74.49 72.21
Kazakh 96.07 95.63 81.23 95.63 50.69 50.56 46.06 39.57 59.46 41.77 25.43 24.51
Korean 99.69 99.69 92.41 99.69 94.22 89.13 99.34 89.13 99.32 66.64 60.30 59.09
Latin 99.99 99.99 98.56 99.99 83.66 68.03 72.75 68.02 51.85 57.57 47.02 43.77
Latin-ITTB 99.89 99.89 82.58 99.89 96.83 91.58 93.50 89.71 97.61 79.74 75.84 76.98
Latin-PROIEL 100.00 100.00 19.56 100.00 95.00 95.08 87.94 86.89 94.91 66.45 61.55 57.54
Latvian 98.94 98.94 98.32 98.94 88.40 75.00 82.02 74.45 86.76 68.38 61.80 59.95
Norwegian-Bokmaal 99.79 99.79 96.38 99.79 96.83 99.79 95.25 94.38 96.66 86.62 83.89 83.27
Norwegian-Nynorsk 99.93 99.93 92.08 99.93 96.54 99.93 95.02 94.15 96.48 85.86 82.74 81.56
Old Church Slavonic 99.99 99.99 40.94 99.99 93.55 93.60 86.72 85.43 90.69 72.60 66.29 62.76
Persian 100.00 99.65 97.76 99.65 96.02 95.94 96.09 95.36 93.58 84.18 80.33 79.24
Polish 99.98 99.87 99.18 99.87 95.43 83.36 83.46 81.35 93.34 86.31 80.21 78.78
Portuguese 99.66 99.54 89.24 99.54 96.30 72.63 93.36 71.59 96.70 86.30 82.72 82.11
Portuguese-BR 99.96 99.86 96.71 99.86 97.07 97.07 99.72 97.05 98.75 88.18 85.97 85.36
Romanian 99.67 99.67 93.72 99.67 96.62 95.87 96.05 95.71 96.54 85.74 80.32 79.88
Russian 99.90 99.90 96.59 99.90 94.69 94.38 84.17 82.61 74.91 80.94 76.15 74.03
Russian-SynTagRus 99.58 99.58 97.97 99.58 97.91 99.58 93.45 93.11 95.43 89.35 86.80 86.76
Slovak 100.00 100.00 84.26 100.00 92.85 77.32 79.61 76.93 86.17 80.78 75.63 72.75
Slovenian 99.96 99.96 98.86 99.96 96.11 88.01 88.33 87.50 95.27 85.37 81.84 81.15
Slovenian-SST 99.87 99.87 13.13 99.87 91.78 86.40 85.32 82.33 93.79 59.26 53.94 46.45
Spanish 99.91 99.74 95.26 99.74 95.54 99.74 96.10 93.70 95.89 85.32 81.95 81.47
Spanish-AnCora 99.97 99.95 98.26 99.95 98.14 98.14 97.57 96.89 98.09 87.91 84.95 83.78
Swedish 99.86 99.86 95.57 99.86 95.66 93.92 94.43 92.85 95.48 81.67 77.58 76.73
Swedish-LinES 99.97 99.97 86.43 99.97 94.26 91.27 99.60 90.04 98.53 80.14 75.57 74.29
Turkish 99.85 97.92 96.89 97.92 91.51 90.58 86.70 84.60 89.60 60.78 53.78 53.19
Ukrainian 99.66 99.66 94.84 99.66 87.33 70.77 71.00 69.74 86.64 69.28 61.09 60.76
Urdu 100.00 100.00 98.32 100.00 92.13 89.93 80.31 76.03 93.04 83.86 77.09 76.69
Uyghur 99.94 99.94 65.31 99.94 76.09 79.04 99.94 75.57 99.94 53.49 33.21 34.18
Vietnamese 84.26 84.26 92.87 84.26 75.29 73.30 83.93 73.26 83.54 44.99 39.97 37.47
Arabic-PUD 80.85 90.81 98.95 90.81 70.39 0.00 22.73 0.00 0.00 54.57 44.34 43.14
Czech-PUD 99.28 99.28 95.40 99.28 96.57 89.92 88.33 87.69 95.37 84.50 79.67 79.80
German-PUD 97.90 97.94 90.75 97.94 84.46 20.40 31.77 1.55 3.10 73.75 66.05 66.53
English-PUD 99.74 99.74 95.57 99.74 94.11 92.99 94.19 90.13 95.47 82.80 79.21 78.95
Spanish-PUD 99.48 99.43 94.14 99.43 88.17 1.76 54.21 0.00 3.43 84.96 77.99 77.65
Finnish-PUD 99.63 99.63 92.20 99.63 95.84 0.00 93.75 0.00 86.50 83.89 80.86 78.65
French-PUD 99.81 98.86 93.33 98.86 88.00 2.39 58.65 0.00 4.79 79.64 74.19 73.63
Hindi-PUD 98.78 98.78 93.26 98.78 84.69 33.09 18.11 4.80 0.00 65.56 52.53 50.85
Italian-PUD 99.64 99.22 94.11 99.22 93.10 2.47 57.26 2.47 95.52 87.39 84.03 83.70
Japanese-PUD 92.41 92.41 95.04 92.41 90.02 7.65 53.75 7.07 91.39 79.26 78.36 76.28
Portuguese-PUD 99.27 99.39 95.94 99.39 88.45 0.00 59.22 0.00 12.57 80.32 74.43 73.96
Russian-PUD 97.25 97.25 98.51 97.25 85.86 78.82 38.20 34.28 0.00 76.69 69.37 68.31
Swedish-PUD 98.35 98.35 94.44 98.35 91.16 88.07 74.58 73.09 84.55 75.43 70.88 70.62
Turkish-PUD 99.13 96.93 90.87 96.93 71.38 0.00 23.67 0.00 0.09 53.58 34.12 34.53
Buryat (surprise) 99.35 99.35 91.81 99.35 84.12 99.35 81.65 78.08 81.40 41.64 21.58 31.50
Kurmanji (surprise) 99.01 98.85 97.02 98.85 90.04 89.84 81.61 80.62 89.76 46.33 32.89 32.35
North Sámi (surprise) 99.88 99.88 98.79 99.88 86.81 88.98 81.93 77.76 81.86 45.53 33.62 30.60
Upper Sorbian (surprise) 99.84 99.84 90.69 99.84 90.30 99.84 74.20 72.43 87.70 63.34 55.76 53.83
Average Score 98.89 98.63 88.68 98.63 91.22 79.48 82.50 73.47 82.64 75.39 69.52 68.35

Table 2: Full results of UDPipe 1.2 Participant System and LAS F1-score of UDPipe 1.1 Baseline
System for reference. The results in italic are not part of the official results and were generated using
post-competition models due to time constraints.
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Treebank Enlarged training data using other treebanks Original training data only
UPOS XPOS Feats AllTags Lemmas UAS LAS UPOS XPOS Feats AllTags Lemmas UAS LAS

Ancient Greek 85.55 43.69 73.30 43.67 82.89 65.37 57.39 82.37 72.33 85.82 72.32 82.63 64.05 57.44
Ancient Greek-PROIEL 95.60 93.34 87.66 84.85 92.73 71.72 66.51 95.74 95.94 88.49 87.04 92.66 71.29 66.49
Czech-CAC 98.34 91.92 90.53 90.36 97.31 88.21 84.40 98.17 90.64 89.43 88.51 97.04 86.17 81.88
Czech-CLTT 95.49 88.07 86.14 85.04 96.79 80.52 76.69 96.28 86.86 87.02 86.75 95.56 78.66 74.67
English-LinES 94.87 92.01 99.39 90.41 98.34 79.06 74.92 94.94 92.56 99.92 90.87 99.92 79.30 75.20
English-ParTUT 93.41 91.92 91.45 89.83 96.39 81.13 76.89 93.08 92.85 92.23 90.84 96.50 79.86 75.31
French-ParTUT 95.38 85.35 91.23 82.06 94.87 84.03 80.17 94.48 94.23 91.89 90.75 94.29 83.24 79.07
Italian 97.31 97.06 97.20 96.26 97.34 88.62 86.11 97.22 97.04 97.00 96.14 97.28 88.53 85.72
Latin-ITTB 96.83 91.58 93.50 89.71 97.61 79.74 75.84 97.15 92.64 93.51 91.24 97.73 80.03 76.26
Slovenian-SST 91.78 86.40 85.32 82.33 93.79 59.26 53.94 88.90 81.59 81.77 79.12 91.39 53.60 47.50
Swedish-LinES 94.26 91.27 99.60 90.04 98.53 80.14 75.57 94.33 91.76 99.97 90.56 99.97 80.25 75.45
Italian-PUD 93.10 2.47 57.26 2.47 95.52 87.39 84.03 93.18 2.47 57.19 2.47 95.57 86.87 83.61

Table 3: The effect of additional training data from other treebanks of the same language in UDPipe 1.2
Participant System.

Treebank
GRU-based segmentation

followed by parsing
Joint segmentation

and parsing
Sents UAS LAS Sents UAS LAS

Gothic 32.46 69.04 62.23 24.12 69.26 62.80
Latin-PROIEL 30.37 66.11 60.63 19.56 66.45 61.55
Slovenian-SST 17.76 57.93 51.95 13.13 59.26 53.94

Table 5: Joint segmentation and parsing in UD-
Pipe 1.2 Participant System, optimized to maxi-
mize parsing likelihood, in comparison with se-
quential segmentation and parsing.

In order to make the extensive results more vi-
sual, we show relative difference of baseline LAS
score using the grey bars (on a scale that ignores 3
outliers). We use this visualization also in later ta-
bles, always showing relative difference to the first
occurrence of the metric in question.

The effect of enlarging training data using other
treebanks of the same language (Section 4.2) is
evaluated in Table 3. We include only those tree-
banks in which the enlarged training data result in
better LAS score and compare the performance to
cases in which only the original training data is
used.

The impact of tokenizer dimension 64 com-
pared to dimension 24 can be found in Table 4.
We also include the effect of not using the suffix
rules for multi-word token splitting, and not using
multi-word token splitting at all. As expected, for
many languages the dimension 64 does not change
the results, but yields superior performance for
languages with either difficult tokenization or sen-
tence segmentation.

The improvement resulting from joint sentence
segmentation and parsing is evaluated in Table 5.
While the LAS and UAS F1-scores of the joint ap-
proach improves, the sentence segmentation F1-
score deteriorates significantly.

The overall effect of search-based oracle with
various transition systems on parsing accuracy is

Beam size UAS LAS
1 74.36 68.46
5 75.33 69.45
10 75.39 69.51
15 75.41 69.53
20 75.42 69.54
Best on development 75.39 69.52data for each treebank

Table 7: UDPipe 1.2 Participant System parsing
scores with various beam sizes.

summarized in Table 6. The search-based or-
acle improves results in all cases, but the in-
crease is only slight if a dynamic oracle is also
used. Note however that dynamic oracles for
non-projective systems are usually either very in-
efficient (for link2, only O(n8) dynamic oracle
is proposed in Gómez-Rodrı́guez et al. (2014))
or not known (as is the case for the swap sys-
tem).

Furthermore, if only a static oracle is used, par-
tially or fully non-projective systems yield better
overall performance than a projective one. Yet,
a dynamic oracle improves performance of the
projective system to the extent it yield better re-
sults (which is further improved by utilizing also a
search-based oracle).

The influence of beam size on UAS and LAS
scores is analyzed in Table 7. According to the
results, tuning beam size for every treebank inde-
pendently is worse than using large beam size all
the time.

Finally, model size and runtime performance of
individual UDPipe components are outlined in Ta-
ble 8. The median of complete model size is circa
13MB and the speed of full processing (tokeniza-
tion, tagging and parsing with beam size 5) is ap-
proximately 1700 words per second on a single
core of an Intel Xeon E5-2630 2.4GHz proces-
sor.
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Treebank UDPipe 1.2 Participant System Tokenizer dim 24 No suffix rules No token splitting
Tokens Words Sents LAS Words Sents LAS Words LAS Words LAS

Ancient Greek 99.96 99.96 98.73 57.39 99.96 98.85 57.42 99.96 57.39 99.96 57.39
Ancient Greek-PROIEL 100.00 100.00 47.09 66.51 100.00 45.14 65.79 100.00 66.51 100.00 66.51
Arabic 99.98 93.71 81.77 66.06 93.71 80.89 66.08 92.89 65.13 78.39 45.84
Basque 99.96 99.96 99.50 70.45 99.96 99.08 70.39 99.96 70.45 99.96 70.45
Bulgarian 99.92 99.92 92.85 84.92 99.91 92.54 84.87 99.92 84.92 99.92 84.92
Catalan 99.97 99.97 99.03 85.53 99.96 99.03 85.52 99.77 85.17 99.67 84.93
Chinese 89.55 89.55 98.20 57.89 89.25 98.50 57.63 89.55 57.89 89.55 57.89
Croatian 99.90 99.90 95.56 77.73 99.92 96.98 77.83 99.90 77.73 99.90 77.73
Czech 99.93 99.93 92.30 83.19 99.92 91.82 83.16 99.93 83.19 99.80 82.96
Czech-CAC 99.97 99.96 100.00 84.40 99.96 99.76 84.40 99.96 84.40 99.72 84.03
Czech-CLTT 99.34 99.34 94.19 76.69 99.52 96.49 77.30 99.34 76.69 99.31 76.65
Danish 99.60 99.60 78.97 75.28 99.58 80.07 75.43 99.60 75.28 99.60 75.28
Dutch 99.80 99.80 76.95 70.52 99.84 77.62 70.09 99.80 70.52 99.80 70.52
Dutch-LassySmall 99.99 99.99 81.83 80.15 99.97 74.84 79.18 99.99 80.15 99.99 80.15
English 99.03 99.03 75.33 77.25 98.97 75.67 77.24 99.03 77.25 99.03 77.25
English-LinES 99.92 99.92 87.40 74.92 99.90 86.59 74.96 99.92 74.92 99.92 74.92
English-ParTUT 99.57 99.55 98.40 76.89 99.61 97.19 77.04 99.54 76.86 99.45 76.75
Estonian 99.89 99.89 93.66 60.01 99.88 93.75 59.99 99.89 60.01 99.89 60.01
Finnish 99.69 99.69 86.75 77.26 99.69 84.70 77.11 99.69 77.26 99.69 77.26
Finnish-FTB 99.97 99.96 85.54 75.31 99.94 84.72 75.03 99.95 75.28 99.74 75.08
French 99.76 98.88 94.58 80.50 98.89 94.09 80.41 98.88 80.50 95.54 74.98
French-ParTUT 99.85 98.97 97.76 80.17 98.88 97.38 80.06 98.97 80.17 95.00 74.43
French-Sequoia 99.76 99.06 84.60 81.35 99.04 84.00 81.34 99.06 81.35 95.07 74.74
Galician 99.93 99.93 96.18 77.73 99.94 95.98 77.81 99.93 77.73 99.93 77.73
Galician-TreeGal 99.62 98.66 85.35 66.31 98.70 86.69 66.32 98.09 65.48 87.58 48.87
German 99.67 99.67 79.35 68.61 99.68 79.34 68.41 99.67 68.61 97.17 64.81
Gothic 100.00 100.00 24.12 62.80 100.00 20.75 62.08 100.00 62.80 100.00 62.80
Greek 99.87 99.87 90.00 80.67 99.87 90.44 80.54 99.87 80.67 99.87 80.67
Hebrew 99.98 85.16 100.00 57.86 85.12 99.59 57.83 81.73 54.60 57.12 26.11
Hindi 100.00 100.00 99.20 87.28 100.00 99.20 87.28 100.00 87.28 100.00 87.28
Hungarian 99.81 99.81 95.54 66.54 99.81 95.58 66.63 99.81 66.54 99.81 66.54
Indonesian 100.00 100.00 91.73 75.47 100.00 90.71 75.48 100.00 75.47 100.00 75.47
Irish 99.40 99.40 94.78 62.87 99.56 94.14 63.00 99.40 62.87 99.40 62.87
Italian 99.91 99.83 97.11 86.11 99.78 96.91 85.97 99.58 85.53 88.92 68.98
Japanese 90.97 90.97 95.01 74.49 90.02 95.01 73.19 90.97 74.49 90.97 74.49
Kazakh 96.07 95.63 81.23 25.43 92.74 81.56 24.39 95.36 25.95 95.36 25.95
Korean 99.69 99.69 92.41 60.30 99.67 92.04 60.08 99.69 60.30 99.69 60.30
Latin 99.99 99.99 98.56 47.02 100.00 98.35 46.96 99.99 47.02 99.99 47.02
Latin-ITTB 99.89 99.89 82.58 75.84 99.94 82.49 75.91 99.89 75.84 99.89 75.84
Latin-PROIEL 100.00 100.00 19.56 61.55 100.00 18.43 61.55 100.00 61.55 100.00 61.55
Latvian 98.94 98.94 98.32 61.80 98.89 98.37 61.81 98.94 61.80 98.94 61.80
Norwegian-Bokmaal 99.79 99.79 96.38 83.89 99.78 95.79 83.86 99.79 83.89 99.79 83.89
Norwegian-Nynorsk 99.93 99.93 92.08 82.74 99.93 92.03 82.68 99.93 82.74 99.93 82.74
Old Church Slavonic 99.99 99.99 40.94 66.29 100.00 39.14 66.15 99.99 66.29 99.99 66.29
Persian 100.00 99.65 97.76 80.33 99.65 98.74 80.30 99.48 80.06 99.08 79.42
Polish 99.98 99.87 99.18 80.21 99.88 99.00 80.20 99.09 77.98 98.60 76.67
Portuguese 99.66 99.54 89.24 82.72 99.55 88.75 82.63 99.29 82.11 88.36 64.71
Portuguese-BR 99.96 99.86 96.71 85.97 99.85 96.80 85.98 99.86 85.97 89.41 67.97
Romanian 99.67 99.67 93.72 80.32 99.62 93.85 80.29 99.67 80.32 99.67 80.32
Russian 99.90 99.90 96.59 76.15 99.91 96.48 76.11 99.90 76.15 99.90 76.15
Russian-SynTagRus 99.58 99.58 97.97 86.80 99.50 97.72 86.70 99.58 86.80 99.58 86.80
Slovak 100.00 100.00 84.26 75.63 99.99 83.14 75.43 100.00 75.63 100.00 75.63
Slovenian 99.96 99.96 98.86 81.84 99.93 98.85 81.74 99.96 81.84 99.96 81.84
Slovenian-SST 99.87 99.87 13.13 53.94 99.97 15.38 53.86 99.87 53.94 99.87 53.94
Spanish 99.91 99.74 95.26 81.95 99.70 94.89 81.92 99.41 81.32 96.55 77.75
Spanish-AnCora 99.97 99.95 98.26 84.95 99.95 98.15 84.95 99.73 84.51 99.45 83.74
Swedish 99.86 99.86 95.57 77.58 99.78 93.17 77.30 99.86 77.58 99.86 77.58
Swedish-LinES 99.97 99.97 86.43 75.57 99.96 85.73 75.44 99.97 75.57 99.97 75.57
Turkish 99.85 97.92 96.89 53.78 97.92 97.09 53.73 97.28 52.58 96.04 50.88
Ukrainian 99.66 99.66 94.84 61.09 99.77 94.89 61.21 99.66 61.09 99.66 61.09
Urdu 100.00 100.00 98.32 77.09 100.00 98.60 77.11 100.00 77.09 100.00 77.09
Uyghur 99.94 99.94 65.31 33.21 99.85 67.23 33.18 99.94 33.21 99.94 33.21
Vietnamese 84.26 84.26 92.87 39.97 82.57 92.26 38.45 84.26 39.97 84.26 39.97
Arabic-PUD 80.85 90.81 98.95 44.34 90.87 99.10 44.37 89.91 43.92 80.85 36.61
Czech-PUD 99.28 99.28 95.40 79.67 99.29 96.29 79.74 99.28 79.67 99.13 79.46
German-PUD 97.90 97.94 90.75 66.05 97.83 86.58 65.43 97.94 66.05 95.58 62.62
English-PUD 99.74 99.74 95.57 79.21 99.66 97.22 79.34 99.74 79.21 99.74 79.21
Spanish-PUD 99.48 99.43 94.14 77.99 99.50 94.36 78.03 99.30 77.78 96.46 74.94
Finnish-PUD 99.63 99.63 92.20 80.86 99.60 91.87 80.92 99.63 80.86 99.63 80.86
French-PUD 99.81 98.86 93.33 74.19 98.88 96.38 74.31 98.86 74.19 96.15 69.79
Hindi-PUD 98.78 98.78 93.26 52.53 98.84 90.92 52.54 98.78 52.53 98.78 52.53
Italian-PUD 99.64 99.22 94.11 84.03 99.25 94.40 83.95 99.05 83.72 89.56 68.04
Japanese-PUD 92.41 92.41 95.04 78.36 90.95 95.04 76.00 92.41 78.36 92.41 78.36
Portuguese-PUD 99.27 99.39 95.94 74.43 99.44 95.21 74.37 99.24 74.18 89.49 60.18
Russian-PUD 97.25 97.25 98.51 69.37 97.38 99.10 69.57 97.25 69.37 97.25 69.37
Swedish-PUD 98.35 98.35 94.44 70.88 98.41 94.47 70.88 98.35 70.88 98.35 70.88
Turkish-PUD 99.13 96.94 90.87 34.12 96.31 92.20 34.02 96.02 32.56 95.99 32.15

Table 4: Impact of tokenizer dimension 64 versus 24, no suffix rules for multi-word token splitting, and
no multi-word token splitting at all in the UDPipe 1.2 Participant System.
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Transition system and oracle
No search-based Search-based

oracle oracle
UAS LAS UAS LAS

Arc standard system with static oracle 74.29 68.27 74.80 68.87
Arc standard system with dynamic oracle 75.31 69.36 75.40 69.51
Swap system with static lazy oracle 74.73 68.76 75.16 69.27
Link2 system with static oracle 74.79 68.76 75.21 69.29
Any system, static oracle 74.72 68.71 75.21 69.31
Any system, any oracle 75.27 69.31 75.38 69.52

Table 6: The overall effect of search-based oracle on various transition systems.

Model configuration Model size Model speed
[MB] [kwords/s]

Tokenizer dim 24 0.04 (0.03–0.15) 27.7 (20–37)
Tokenizer dim 64 0.20 (0.19–0.31) 6.0 (4.9–8.6)
Tagger&lemmatizer 9.4 (2.3–24.8) 6.5 (2.1–14)
Parser beam size 1 3.2 (1.9–6.9) 14.9 (12–19)
Parser beam size 5 2.7 (2.2–3.6)
Complete model 13.2 (4.4–31.9) 1.7 (1.2–2.3)

Table 8: UDPipe 1.2 Participant System model
size and runtime performance, displayed as a me-
dian for all the treebanks, together with the 5th and
95th percentile. The complete model consists of a
tokenizer with character embedding and GRU cell
dimension 64, a tagger, a lemmatizer and a parser
with beam size 5.

6 Conclusions and Future Work

We described our contributions to CoNLL 2017
UD Shared Task: UDPipe 1.1 Baseline System
and UDPipe 1.2 Participant System. Both these
systems and the pretrained models are available at
http://ufal.mff.cuni.cz/udpipe under open-
source Mozilla Public Licence (MPL). Binary
tools as well as bindings for C++, Python, Perl,
Java and C# are provided.

As our future work, we consider using deeper
models in UDPipe for tokenizers, POS taggers and
especially for the parser.
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Jana Straková, Milan Straka, and Jan Hajič. 2014.
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