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Abstract

This paper explores a divisive hierarchi-
cal clustering algorithm based on the well-
known Obligatory Contour Principle in
phonology. The purpose is twofold: to see
if such an algorithm could be used for un-
supervised classification of phonemes or
graphemes in corpora, and to investigate
whether this purported universal constraint
really holds for several classes of phono-
logical distinctive features. The algorithm
achieves very high accuracies in an unsu-
pervised setting of inferring a consonant-
vowel distinction, and also has a strong
tendency to detect coronal phonemes in an
unsupervised fashion. Remaining classes,
however, do not correspond as neatly
to phonological distinctive feature splits.
While the results offer only mixed support
for a universal Obligatory Contour Princi-
ple, the algorithm can be very useful for
many NLP tasks due to the high accuracy
in revealing consonant/vowel/coronal dis-
tinctions.

1 Introduction1

It has long been noted in phonology that there
seems to be a universal cross-linguistic tendency
to avoid redundancy or repetition of similar speech
features within a word or morpheme, especially if
the phonemes are adjacent to one another. Many
different names are given to variants of this gen-
eral phenomenon in the linguistic literature: “iden-
tity avoidance” (Yip, 1998), “similar place avoid-
ance” (Pozdniakov and Segerer, 2007), “oblig-
atory contour principle” (OCP) (Leben, 1973),
and “dissimilation” (Hempl, 1893). Some special

1All code data sets used are available at https://
github.com/cvocp/cvocp

cases such as haplology (avoidance of adjacent
identical syllables) also fall in this general cate-
gory of avoiding repetition along some dimension.

The general phenomenon itself is supported by
robust, although inconsistent, evidence across a
number of languages. An early example is the
observation of Spitta-Bey (1880),2 that the Ara-
bic language tends to favor combination of con-
sonant segments (phonemes) in morphemes that
have different places of articulation; this was also
later pointed out by Greenberg (1950) and those
Semitic root outliers that deviate from this pat-
tern were analyzed in depth in Frajzyngier (1979).
In Proto-Indo-European (PIE) roots, which are
mostly structured CVC, stop-V-stop combinations
have been found to be statistically underrepre-
sented (Iverson and Salmons, 1992). That is, PIE
seems to obey a cross-linguistic constraint that dis-
favors two similar consonants in a root. Another
specific example comes from Japanese, where the
phenomenon called Lyman’s law—which effec-
tively says that a morpheme may consist of max-
imally one voiced obstruent—can also be inter-
preted as avoidance (Itô and Mester, 1986).

In light of such evidence, proposals have been
put forth to define the concept of phoneme by
distributional properties alone as opposed to the
prevalent distinctive feature systems which are
largely based on articulatory features (Fischer-
Jørgensen, 1952). Elsewhere, after finding a sta-
tistical tendency to avoid similar place of articula-
tion in word-initial and word-medial consonants,
Pozdniakov and Segerer (2007) offer the argument

2Nun hat, wie schon längst bemerkt ist, die arabische
Sprache die Neigung, solche Buchstaben in einem Worte zu
vereinigen, deren Organe weit von einander entfernt liegen,
wie Kehllaute und Dentale. Translation: Now, the Arabic
language, as has long been noted, has the tendency to com-
bine such letters in a word where the place of articulation is
distant, such as gutturals and dentals (Spitta-Bey, 1880, p.
15).
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that this phenomenon of “Similar Place Avoid-
ance” is a statistical universal.

This phenomenon is often filed under the
generic heading “obligatory contour principle”
(Leben, 1973; McCarthy, 1986; Yip, 1988; Odden,
1988; Meyers, 1997; Pierrehumbert, 1993; Rose,
2000; Frisch, 2004). Originally, the OCP was ap-
plied as a theoretical constraint only to tone lan-
guages, with the argument that adjacent identical
tones in underlying forms were rare, and this re-
flected an obligatory contour principle. The usage
has since spread, and is assumed to account for
segmental features other than tone.

It is unclear why the phenomenon is so
widespread and why it manifests itself in the di-
verse ways it does. Accounts range from informa-
tion compression to a diachronically visible hyper-
correction by listeners who misperceive the signal
and make the assumption that repetition is unlikely
(Ohala, 1981).

This paper explores the simplest incarnation of
the idea of similarity avoidance; namely, that two
adjacent segments are preferably different in some
way and that this difference reveals itself glob-
ally. That is, it is not assumed that the con-
straint is absolute; rather, an algorithm is devel-
oped that induces grouping of unknown phoneme
symbols so as to maximize potential alternation
of clusters in a sequence of symbols, i.e. a cor-
pus. If the OCP holds for phonological or phonetic
features—primarily places of articulation—such a
clustering algorithm could group phonemes along
the lines of distinctive features. While, as we
shall see, the observations do not support the pres-
ence of a strong universal OCP effect, the top-level
clusters discovered by the algorithm correspond
nearly 100% to the distinction of consonants and
vowels—or syllabic and non-syllabic elements if
expressed in terms of features. Furthermore, a tier-
based variant of the algorithm additionally groups
consonants somewhat reliably into coronal/non-
coronal places of articulation, and also often dis-
tinguishes front vowels from back vowels. This
is true even if the algorithm is run on alphabetic
representations. An evaluation of the ability to
detect C/V distinction against a data set of 503
Bible translations (Kim and Snyder, 2013) is in-
cluded, improving upon earlier work that attempts
to distinguish between consonants and vowels in
an unsupervised fashion (Kim and Snyder, 2013;
Goldsmith and Xanthos, 2009; Moler and Morri-

son, 1983; Sukhotin, 1962). The algorithm is also
more robust than earlier algorithms that perform
consonant-vowel separation and works with less
data, something that is also briefly evaluated.

This paper is structured as follows: an overview
of previous work is given in section 2, mostly
related to the simpler task of grouping conso-
nants and vowels without labeled data, rather than
identifying distinctive features. Following that,
the general algorithm is developed in section 3,
after which the experiments on both phonemic
and graphemic representations in section 4 are re-
ported. Four experiments are evaluated. The first
uses phonemic data from 9 languages for clus-
tering and evaluates clustering along distinctive
feature lines. The second is a graphemic exper-
iment that uses a data set of Bible translations
in 503 languages where the task is to distinguish
the vowels from the consonants; here, results are
compared to Kim and Snyder (2013) on the same
data set. That data is slightly noisy, motivating
the third experiment, which is also graphemic and
evaluates consonant-vowel distinctions on vetted
word lists from data taken from the ACL SIG-
MORPHON shared task on morphological reinflec-
tion (Cotterell et al., 2016). The ability of a tier-
based variant of the algorithm to separate coro-
nals from non-coronals is evaluated in a fourth ex-
periment where Universal Dependencies corpora
(Nivre et al., 2017) are used.

The main results are presented in section 5.
Given the high accuracy of the algorithm in C/V
distinction with very little data and its consequent
potential applicability to decipherment tasks, a
small practical example application is evaluated
which analyzes a fragment of text, a manuscript
of only 54 characters.

2 Related Work

The statistical experiments of Andrey
Markov (1913) on Alexander Pushkin’s poem
Eugene Onegin constitute what is probably one of
the earliest discoveries of the fact that significant
latent structure can be found by examining
immediate co-occurrence of graphemes in text.
Examining a 20,000-letter sample of the poem,
Markov found a strong statistical bias that favored
alternation of consonants and vowels. A number
of computational approaches have since been
investigated that attempt to reveal phonological
structure in corpora. Often, orthography is used
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as a proxy for phonology since textual data
is easier to come by. A spectral method was
introduced by Moler and Morrison (1983) with
the explicit purpose of distinguishing consonants
from vowels by a dimensionality reduction on a
segment co-occurrence matrix through singular
value decomposition (SVD). An almost iden-
tical SVD-based approach was later applied to
phonological data by Goldsmith and Xanthos
(2009). Hidden Markov Models coupled with
the EM algorithm have also been used to learn
consonant-vowel distinctions (Knight et al.,
2006) as well as other latent structure, such as
vowel harmony (Goldsmith and Xanthos, 2009).
Kim and Snyder (2013) use Bayesian inference
supported by simultaneous language clustering to
infer C/V-distinctions in a large number of scripts
simultaneously. We compare our results against a
data set published in conjunction with that work.
More directly related to the current work are
Mayer et al. (2010) and Mayer and Rohrdantz
(2013) who work with models for visualizing
consonant co-occurrence in a corpus.

2.1 Sukhotin’s algorithm

Sukhotin’s algorithm (Sukhotin, 1962, 1973) is a
well-known algorithm for separating consonants
from vowels in orthographic data; good descrip-
tions of the algorithm are given in Guy (1991) and
Sassoon (1992). The idea is to start with the as-
sumption that all segments in a corpus are con-
sonants, then repeatedly and greedily find the seg-
ment that co-occurs most with other segments, and
declare that a vowel. This is performed until a
stopping condition is reached. The algorithm is
known to perform surprisingly well (Foster, 1992;
Goldsmith and Xanthos, 2009), although it is lim-
ited to the task it was designed to do—inferring
a C/V-distinction (with applications to decipher-
ment) without attempting to reveal any further
structure in the segments. All the syllabic/non-
syllabic distinction results in the current work are
compared with the performance of Sukhotin’s al-
gorithm.

3 General OCP-based algorithm

At the core of the new clustering algorithm is the
OCP-observation alluded to above, already empir-
ically established in (Markov, 1913, 2006), that
there is a systematic bias toward alternating ad-
jacent segments along some dimension. To reveal

this alternation, one can assume that there is a nat-
ural grouping of all segments into two initial sets,
called 0 and 1, in such a way that the total number
of 0-1 or 1-0 alternations between adjacent seg-
ments in a corpus is maximized. For example,
consider a corpus of a single string abc. This can
be split into two nonempty subsets in six different
ways: 0 = {ab} and 1 = {c}; 0 = {a} and 1 = {bc};
0 = {ac} and 1 = {b}, and their symmetric variants
which are produced by swapping 0 and 1. Out of
these, the best assignment is 0 = {ac} and 1 = {b},
since if reflects an alternation of sets where abc 7→
010. The ‘score’ of this assignment is based on the
number of adjacent alternations, in this case 2 (01
and 10).

Outside of such small examples which split per-
fectly into alternating sets, once this optimal divi-
sion of all segments into 0 and 1 is found, there
may remain some residue of adjacent segments in
the same class (0-0 and 1-1). The sets 0 and 1 can
then be partitioned anew into subsets 00, 01 (from
0) and 10 and 11 (from 1). Again, there may be
some residue, and the partitioning procedure can
be applied recursively until no further splitting is
possible, i.e. until all of the adjacent segments fall
into different clusters in the hierarchy.

More formally, given a corpus of words
w1, . . . , wn and where each word is a sequence of
symbols s1, . . . , sm, this top-level objective func-
tion that we want to maximize can be expressed
as

∑
w

∑
i

1(Group(si) 6= Group(si+1)) (1)

where Group(s) is the set that segment s is in.
Given a suggested split of all the segments in a

corpus into, say, the top-level disjoint sets 0 and
1, we obviously do not need to examine the whole
corpus to establish the score but can do so by sim-
ply examining bigram counts of the corpus.

Still, finding just the top-level split of segments
into 0 and 1 is computationally expensive if done
by brute force by trying all the possible assign-
ments of segments into 0 and 1 and evaluating the
score for each assignment. Since there are 2n ways
of partitioning a set of segments into two subsets
(ignoring the symmetry of 0 and 1), such an ap-
proach is feasible in reasonable time only for small
alphabets (< 25, roughly).

To address the computational search space
problem, the algorithm is implemented by a type
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of simulated annealing (Kirkpatrick et al., 1983;
Černỳ, 1985) to quickly find the optimum. The al-
gorithm for the top-level split proceeds as follows:

(1) Randomly divide the set S into S′ and S′′

(2) Draw an integer p from Uniform(1. . . K),
where K depends on the cooling schedule

(3) Swap p random segments between S′ and S′′

(4) If score is higher after swap, keep swap else
discard swap. Go to (2).

The idea is to begin with an arbitrary partition
of S into S′ and S′′, then randomly trying succes-
sively smaller and smaller random swaps of seg-
ments between the two sets according to a cooling
schedule, always keeping the swap if the score im-
proves. The cooling schedule was tested against
corpora that use smaller alphabets where the an-
swer is known beforehand by a brute-force cal-
culation. The cooling was made slow enough to
give the correct answer in 100/100 tries on such
development corpora. In practice, this yields an
annealing schedule where early swaps (the size of
K) are sometimes as large as |S|, ending in K
equaling 1 for several iterations before termina-
tion. This splitting is repeated recursively to pro-
duce new sub-splits until no splitting is possible,
i.e. the score cannot improve by splitting a set into
two subsets.

3.1 A tier-based variant

Many identity avoidance effects have been doc-
umented that seem to operate not by strict adja-
cency, but over intervening material, such as con-
sonants and vowels, as discussed in the introduc-
tion. For example, Rose (2000) argues that OCP
effects apply to adjacent consonants across inter-
vening vowels in Semitic languages. This moti-
vates a tier-based variant of the algorithm. In this
modification, instead of repeatedly splitting sets
based on a residue of adjacent segments that be-
long to the same set, we instead modify the cor-
pus, removing segments after each split. Each
time we split a set S into S′ and S′′ based on a
corpus C, we also create new corpora C ′ and C ′′

where segments in S′′ are removed from C ′ and
segments in S′ are removed from C ′′. Splitting
then resumes recursively for S′ and S′′, where S′

uses the corpus C ′ and S′′ the corpus C ′′. Fig-
ure 1 shows an example of this. Here, the initial

telaka

tlk
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corpus
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Figure 1: Illustration of the tier-based variant of
the clustering algorithm. The left-hand side (a)
shows the original corpus (the single word telaka),
where each character is assigned a top-level group-
ing, after which the corpus is modified to remove
characters in the respective sets 0 and 1. The al-
gorithm is then applied recursively to the modified
corpora. The resulting clustering is shown in (b).

corpus C = telaka, and the initial segment set
S = {a, e, k, l, t} is split into S′ = {a, e} and
S′′ = {k, l, t} on a first iteration. Likewise, the
corpus is now modified by removing the S′ and
S′′ segments from C ′′ and C ′ respectively, yield-
ing new corpora C ′ = eaa and C ′′ = tlk, and
splitting proceeds on these subcorpora. This way,
if, say, consonants and vowels operate on different
tiers and get split first into top-level sets, the re-
maining consonants will become adjacent to each
other on the next iteration, as will the vowels.

4 Experiments

Four experiments are evaluated; the first exper-
iment performs a full hierarchical clustering on
phonemic data in 9 typologically divergent lan-
guages. The clusters are evaluated according to
the following simple criterion: counting the num-
ber of splits in the tree that correspond to a split
that could be expressed through a single phonolog-
ical ± feature. For example, if the top level split
in the tree produced corresponds to exactly the
consonants and vowels, it is counted as a 1, since
this corresponds to the partitioning that would be
produced by the phonological feature [±syllabic].
If there is no way to express the split through a
single distinctive feature, it is counted as a 0. A
standard phonological feature set like that given in
sources such as Hayes (2011) or PHOIBLE (Moran
et al., 2014) is assumed. As mentioned above,
the hypothesis under examination is that if the
OCP is a strong universal principle, some non-
significant number of subclusters coinciding with
single phonological distinctive features should be
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Language Source Sample

Arapaho (Cowell and Moss Sr, 2008) towohei hiiTetiP tohnookeP tootheiPeihoo . . .
Basque Wikipedia + g2p meSikoko iriburuko espetSe batean sartu zuten eta meSiko . . .
English (Brent and Cartwright, 1996) ju want tu si D@ bUk lUk DErz @ bOI wID hIz hæt . . .
Finnish (Aho, 1884) + g2p vai oli eilen kolmekymmentæ kotoapæinkø se matti ajelee . . .
Hawaiian Wikipedia + g2p Po ka Pōlelo hawaiPi ka Pōlelo makuahine a ka poPe maoli . . .
Hungarian (Gervain and Erra, 2012) idZ nintS j6j dE tSEtSE hol 6 montSik6 hol v6n 6 montSi itt 6 . . .
Italian Wikipedia + g2p tSitta eterna kon abitanti e il komune piu popoloso ditalia . . .
Polish (Boruta and Jastrzebska, 2012) gdýie jest bartuC gdýie jest ñe ma xodý tu a kuku ţo xovaS . . .
Spanish (Taulé et al., 2008) + g2p un akueRdo entRe la patRonal i los sindikatos fRanTeses sobRe . . .

Table 1: The data used for the phonemic clustering experiment, with sources indicated and a sample.

found. Both the non-tier algorithm and the tier-
based algorithm is evaluated.

In the second experiment, the capacity of the
algorithm to distinguish between consonants and
vowels is evaluated, this time with graphemic data.
To separate consonants from vowels—the most
significant dimension of alternation between ad-
jacent segments—the algorithm is run only for the
top-level split, and it is assumed that the top two
subsets will represent the consonants and vow-
els. Here, the results are compared with those of
Kim and Snyder (2013), who train a hierarchical
Bayesian model to perform this distinction over all
the 503 languages at the same time. Sukhotin’s al-
gorithm is also used as another baseline.

In the third experiment, the capacity to distin-
guish consonants and vowels in graphemic data in
the form of word lists—i.e. where no frequency
data is known—is evaluated compared against
Sukhotin’s algorithm.

4.1 Phonemic splitting

Nine languages from a diverse set of sources were
used for this experiment (see Table 1). Some
of the language data were already represented as
phonemes (English, Hungarian, and Polish), while
for the others, which have close-to-phonemic writ-
ing systems, a number of grapheme-to-phoneme
(g2p) rules were created manually to convert the
data into an International Phonetic Alphabet (IPA)
representation. The conversion was on the level of
the phoneme—actual allophones (such as /n/ be-
ing velarized to [N] before /k/ in most languages or
/d/ being pronounced [D] intervocalically in Span-
ish) were not modeled. Table 1 summarizes the
data and gives a sample of each corpus.

For this data, the clustering algorithm was run
as described above and each split was annotated

a e d h i j k l m n ŋ o p r s t u v æ ø

a e i o u y æ ø

a e o æ ø

[-syllabic]

i u y h l ŋ p r s

h s

j k

u y a æ

e ø h tnpsy u ao

l ŋ r

æ

e ø

i l ŋ p r d m t v

l ŋ r

e o ø j k n

d m v

d j k m n t v

[+trill]

[-high]

d h j k l m n ŋ p r s t v

[+back]

[+round] [+low] [-del rel]

[+back] [+front] [+cons] [+sonorant] [-coronal] [+voice]

[+round]

Figure 2: Resulting Finnish clusters with manual
annotation of the distinctive feature splits.

with information about whether the split could be
defined in terms of a single distinctive feature.
Figure 2 shows the output of such a tree produced
by the algorithm, with manual feature annotations.

The percentage of correctly identified top-level
splits (which are syllabic/non-syllabic segments)
is also given, together with the corresponding
results from Sukhotin’s C/V-inference algorithm,
and Moler & Morrison’s SVD-based algorithm.

4.2 C/V distinction in Bible translations

This experiment relies on word lists and fre-
quency counts from Bible translations covering
503 distinct languages. Of these, 476 use a Latin
alphabet, 26 a Cyrillic alphabet, and one uses
Greek. The data covers a large number of lan-
guage groups, and has been used before by Kim
and Snyder (2013) to evaluate accuracy in unsu-
pervised C/V-distinction.

The algorithms were evaluated in two different
ways: one, on a task where each C and V set is
inferred separately for each language, and two, in
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a task where all languages’ consonants and vowels
are learned at once, as if the corpus were one lan-
guage, for clearer comparison with earlier work.
Both token-level accuracy and type-level accuracy
are given, again, for comparability reasons. For
this data set, Sukhotin’s C/V-algorithm and Moler
& Morrison’s algorithm were used as baselines in
addition to the results of Kim and Snyder (2013).

4.3 C/V-distinction with word lists

An additional experiment evaluates the al-
gorithm’s capacity to perform C/V-distinction
against Sukhotin’s algorithm on a data set of 10
morphologically complex languages where lists of
inflected forms were taken from the ACL SIGMOR-
PHON shared task data (Cotterell et al., 2016). In
this case, we have no knowledge of the frequency
of the forms given, but need to rely only on type
information. The Arabic data was transliterated
into a latinate alphabet (by DIN 31635), with vow-
els marked. For the other languages, the native al-
phabet was used. Per-type accuracy is reported.

5 Results

On the first task, which uses phonemic data,
consonant/vowel distinction accuracy is 100%
throughout (see Table 2). Sukhotin’s algorithm
also performs very well in all except two lan-
guages. English, in particular, is a surprising out-
lier, with Sukhotin’s algorithm only classifying
21.62% correctly. This is probably due to there
existing a proportionately large number of syllabic
phonemes in English (13/37). Moler & Morrison’s
algorithm has less than perfect accuracy in three
languages. There is great variation in the OCP
algorithm’s capacity to produce splits that coin-
cide with phonological features in both the tier-
based and non-tier variants. Roughly speaking,
the larger the phoneme inventory, the less likely it
is for the splits to align themselves in accordance
with phonological features. Also, since the tier-
based variant naturally leads to more splits, the
figures appear higher since splits in lower levels of
the tree, which contain few phonemes, can almost
always be done along distinctive feature lines. The
depth of the induced tree also correlates with the
variety of syllable types permitted in the language.
An extreme example of this is Hawaiian (Figure
3), which only permits V and CV syllables, yield-
ing a very shallow tree where no consonants are
split beyond the first level. English and Polish lie

a e h i k l m n o p u w ʔ

h k l m n p w ʔa e i o u

e i u

e ui a o

e u

a o

Figure 3: Hawaiian clusters reveal a predomi-
nantly CV/V syllable type since the non-syllabic
branch of the tree is shallow.

at the other extreme, with 37 splits each. This cir-
cumstance may perhaps be further leveraged to in-
fer syllable types from unknown scripts.

On the C/V inference task for 503 languages,
the OCP algorithm outperforms Sukhotin’s algo-
rithm and Kim and Snyder (2013) (K&S) when
each language is inspected individually (see Fig-
ure 3). However, for the case where we learn all
distinctions at once, the OCP algorithm produces
an identical result with Sukhotin. Here the token
level accuracy also exceeds K&S with 99.89 vs.
98.55.

The already high accuracy rate of the OCP algo-
rithm on the Bible translation data is probably in
reality even higher, especially when all languages
are inspected at the same time. Out of the 343
grapheme types, OCP and Sukhotin only misclas-
sify 7, and upon closer manual inspection, it is
found that only two of these are bona fide errors.
Five are errors in the gold standard—all in the
Cyrillic-based data (see Table 5 for an overview
of the errors in the gold standard or the classifica-
tions). The first actual error, Cyrillic s, only occurs
in five word types in the entire corpus, and is al-
ways surrounded by other consonants. The other
error, ǒ, is more difficult to interpret—it occurs
in three typologically different languages: Akoose
(bss), Northern Grebo (gbo), and Peñoles Mixtec
(mil).

On the third task, where only word lists are
available from grapheme classification into C/V,
the OCP algorithm performs equally to Sukhotin’s
algorithm, except for one language (Navajo),
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Language Splits Splits C/V C/V C/V Inventory
OCP OCP(tier) (OCP) (Sukh.) (M&M) size

Arapaho 9/14 (62.29) 11/15 (73.34) 100.0 100.0 100.0 16
Basque 8/14 (57.14) 16/20 (80.00) 100.0 100.0 100.0 21
English 3/12 (25.00) 15/25 (60.00) 100.0 21.62 94.59 37
Finnish 14/16 (87.50) 17/19 (89.47) 100.0 100.0 100.0 20
Hawaiian 4/5 (80.00) 8/12 (66.67) 100.0 100.0 92.30 13
Hungarian 10/20 (50.00) 21/31 (67.74) 100.0 96.97 100.0 33
Italian 7/11 (63.64) 15/20 (75.00) 100.0 100.0 100.0 22
Polish 10/21 (47.61) 23/33 (69.70) 100.0 100.0 97.30 37
Spanish 10/15 (66.67) 16/21 (76.19) 100.0 100.0 100.0 22

Table 2: Phonemic data: fraction of cluster splits that go exactly along single distinctive features (Splits
with OCP/OCP (tier)), together with percentage. Also given are C/V-distinction accuracy (per type) for
the OCP algorithm (OCP), Sukhotin’s algorithm (Sukh.), Moler and Morrison’s algorithm (M&M).

OCP Sukhotin M&M K&S

Individual
Type 95.10 92.50 94.15 −
Token 96.55 93.65 95.59 95.99

All
Type 96.43 96.43 89.79 −
Token 99.89 99.89 99.79 98.55

Table 3: Results on the 503-language Bible trans-
lations on consonant-vowel distinction. Both type
and token accuracy are included. The Individ-
ual column shows the macro-averaged results on
running all languages individually, and the All-
column shows the results of running all data at
once. Here, ‘OCP’ is the current algorithm;
‘Sukhotin’ is Sukhotin’s algorithm, ‘M&M’ is the
SVD-method in Moler & Morrison (1983), and
‘K&S’ is the method given in Kim & Snyder
(2013).

where the OCP algorithm misclassifies one sym-
bol less (see Figure 4).

6 Application to text fragments: the
arrow of the gods

Given that the algorithm performs very well
on consonant-vowel distinctions and groups seg-
ments along distinctive features better with small
alphabets, an additional experiment was per-
formed on a small manuscript to get a glimpse of
potential application to cryptography and the de-
cipherment of substitution ciphers. In this experi-
ment, the writing system is known to be alphabetic
(in fact Cyrillic), and the purpose is to examine the
clustering induced by so little available data.

Language OCP Sukhotin M&M

Arabic 1/40 (97.50) 1/40 (97.50) 1/40 (97.50)
Finnish 0/31 (100.0) 0/31 (100.0) 0/31 (100.0)
Georgian 1/33 (96.97) 1/33 (96.97) 0/33 (100.0)
German 1/30 (96.67) 1/30 (96.67) 2/30 (93.33)
Hungarian 1/33 (96.97) 1/33 (96.97) 1/33 (96.97)
Maltese 2/30 (93.33) 2/30 (93.33) 0/30 (100.0)
Navajo 2/30 (93.33) 3/30 (90.00) 1/30 (96.67)
Russian 0/34 (100.0) 0/34 (100.0) 2/34 (94.12)
Spanish 0/33 (100.0) 0/33 (100.0) 2/33 (93.94)
Turkish 0/34 (100.0) 0/34 (100.0) 0/34 (100.0)

Average 97.48 97.14 97.25

Table 4: Per type accuracy on C/V-distinction on
word lists. Listed are the number of misclassifica-
tions, and the accuracy per type.

The birch bark letter number 292 found in 1957
in excavations in Novgorod, Russia, is the oldest
known document in a Finnic language (Karelian),
stemming most likely from the early 13th century
(Haavio, 1964). The document consists of only
54 symbols, written in Cyrillic.3 The clustering
method (see Figure 4) identifies the vowels and
consonants, except for the grapheme y (/u/). This
is probably because the short manuscript renders
the word nuoli (Latinized form) ‘arrow’ inconsis-
tently in three different ways, with Cyrillic y = /u/
occurring in different places, making the segment
difficult for the algorithm. The high vowels /i/ and

3The exact translation of the contents is a matter of dis-
pute; the first translation given by Yuri Yeliseyev in 1959
reads as follows (Haavio, 1964): God’s arrow ten [is] your
name // This arrow is God’s own // [The] God directs judg-
ment.
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Symbol Class Comments
 
s         V      Macedonian, only occurs four times. 
ь         V      Cyrillic soft sign (neither vowel not consonant). 
ѳ         V      Cyrillic; error, should be CYRILLIC SMALL LETTER BARRED O, a vowel. 
|         V      Halh Mongolian, incorrect words in corpus. 
й         C      Cyrillic, corresponds to the palatal approximant /j/, incorrect in gold. 
ї         C      Ukrainian iotated vowel sounds /ji/, unclear if vowel or consonant. 
ǒ         C      Bantu languages: high tone/long vowel in Bantu languages.  

Table 5: The only misclassified segments in the 503-Bible test. The column Class gives this ‘incorrect’
classification of the OCP algorithm. Most of these are errors in the data/gold standard. Only the Cyrillic
s which occurs four times in the data (always adjacent to other consonants) and the ǒ-symbol are actually
incorrect.

/u/ (left) are also separated from the non-high vow-
els (right) /a/, /o/, and /e/ (the Cyrillic soft sign also
falls in this group). Sukhotin’s algorithm, which
only infers the consonants and vowels, makes one
more mistake than the current algorithm.

7 Identifying coronal segments with the
tier-based variant

Although the only really robust pattern reliably
discovered by the algorithm is the distinction be-
tween consonants and vowels, there are strong pat-
terns within some of the clusters that appear to
be cross-linguistically constant, specifically with
the tier-based variant. The first is that, when-
ever a five-vowel system is present (such as in
Basque, Spanish, and Italian), after the topmost
split which divides up the vowels and the conso-
nants, the first split within the vowel group is al-
most always {a, o, u} and {e, i}. A second pat-
tern concerns coronal segments. The first split
within the consonant group tends to divide the seg-
ments into coronal/non-coronal segments. This
is not an absolute trend, but happens far above
chance. This is also true when running the algo-
rithm on graphemic data, where coronals can be
identified. Table 6 gives an overview of how cross-
linguistically coherent the resulting first consonant
splits are. The data set is a selection of 14 lan-
guages from the Universal Dependencies 2.0 data
(Nivre et al., 2017).

8 Conclusion & future work

This paper has reported on a simple algorithm
that rests on the assumption that languages tend
to exhibit hierarchical alternation in adjacent
phonemes. While such alternation does not always
occur for any individual adjacent segment pair, on

Language Second Consonant Group #C

Basque (c) l n (ñ) r s x z 21

Catalan l n r s x z 22

Irish d l n r s 13

Dutch h l n r x z 19

Estonian h l n r s 16

Finnish h l n r s (š) (x) (z) 21

German j l n r s x z 21

Indonesian l n r s z 20

Italian h l n r s (y) 21

Latin d h l n r s 16

Latvian č j ķ l ļ n ņ r s z ž 24

Lithuanian j l n r s š z ž 19

Portuguese ç j l n (ñ) r s x 24

Slovak c ď j l ľ n ň r s š z ž 26

Table 6: The second consonant grouping found us-
ing the tier-based OCP algorithm. This is the split
below the top-level consonant/vowel split. The
characters in this set largely correspond to coro-
nal sounds. The data comes from 14 languages in
the Universal Dependencies 2.0 data set. Shown in
parentheses are symbols outside the native orthog-
raphy of the language (most likely from named en-
tities and borrowings found in the corpora). The
rightmost column shows the total number of iden-
tified consonants in the language. In particular, l,
n, and r are always in this set, while s is nearly
always present.
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(a) (b)

юмолануолиїнимижи 

ноулисѣханолиомобоу 

юмоласоудьнииохови 
 

(c)

а б в д ж и л м н о с у х ь ю ї ѣ

б в д ж л м н с у х

в д ж л м н с х б у

а и о ь ю ї ѣ

и ю ї а о ь ѣ

(d) (e)

C: б в ж л м н с у х ь

V: ѣ ю а д ї и о

C: б в ж л м н с у х

V: ѣ ь ю а д ї и о

(f)

C: б в д ж л м н с у х

V: ѣ ь ю а ї и о

Figure 4: Clustering the graphemes in the 54-
symbol birch bark letter 292 manuscript (a), with
transcription given in (b), and the results of OCP
clustering (c). Also given are the C/V classifica-
tions produced by the Moler and Morrison (1983)
algorithm (d), Sukhotin’s algorithm (e), and the
OCP algorithm (f), with errors marked with red
boxes.

the corpus level this alternation largely holds and
serves to reveal interesting structure in phonolog-
ical organization. The top cluster discovered by
the algorithm is also a highly reliable indicator
of syllabic vs. non-syllabic segments, i.e. con-
sonants and vowels, and improves upon the state-
of-the-art in this unsupervised task. Interestingly,
Sukhotin’s C/V algorithm, which has similar per-
formance (Sukhotin, 1962), can be interpreted as
a greedy approximation of the first iteration in
the current algorithm. A tier-based variant of the
algorithm tends to detect front/back vowel con-
trasts and coronal/non-coronal contrasts as well,
although this is more of a robust trend rather than
an absolute.

Lower levels in the clustering approach are less
reliable indicators of classical feature alternation,
but can serve effectively to reveal aspects of sylla-
ble structure. For example, it is obvious from the
Hawaiian clustering that the predominant syllable

in the language is CV. One is led to conclude that
the obligatory contour principle may be manifest
in larger classes of segments (such as [±syllabic]),
but not necessarily in on the fine-grained level.
Some resulting cluster splits such as for example
{m,p} vs. {b,f,t} (example from Basque) are often
not only inseparable by a single feature split, but
are not separable by any combination of features.
This lack of evidence for a strong OCP may be
in line with the vigorous debate in the phonologi-
cal literature on the universal role of the OCP (see
e.g. McCarthy (1986); Odden (1988)). Some lan-
guages (such as Finnish and Hawaiian) yield splits
that almost always coincide with a single phono-
logical feature, whereas other languages do not.
Smaller inventories typically yield more robust re-
sults, although this may be partly due to chance
factors—there are more ways to split a small set
according to distinctive features than large sets.

Of interest is the utility of the extracted clus-
ters in various supervised and semi-supervised
NLP applications. For example, in algorithms that
learn to inflect words from annotated examples
(Ahlberg et al., 2015; Cotterell et al., 2016), it is
often useful to have a subdivision of the segments
that alternate, since this allows one to general-
ize behavior of classes of segments or graphemes,
similar to the way e.g. Brown clusters (Brown
et al., 1992) generalize over classes of words. La-
beling segments with the position in a clustering
tree and using that as a feature, for instance, is a
cheap and straightforward way to inject this kind
of knowledge into supervised systems designed to
operate over many languages.
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