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Abstract

We present the first large-scale English “all-
words lexical substitution” corpus. The
size of the corpus provides a rich resource
for investigations into word meaning. We
investigate the nature of lexical substitute
sets, comparing them to WordNet synsets.
We find them to be consistent with, but
more fine-grained than, synsets. We also
identify significant differences to results
for paraphrase ranking in context reported
for the SEMEVAL lexical substitution data.
This highlights the influence of corpus con-
struction approaches on evaluation results.

1 Introduction

Many, if not most, words have multiple meanings;
for example, the word “bank” has a financial and
a geographical sense. One common approach to
deal with this lexical ambiguity is supervised word
sense disambiguation, or WSD (McCarthy, 2008;
Navigli, 2009), which frames the task as a lemma-
level classification problem, to be solved by train-
ing classifiers on samples of lemma instances that
are labelled with their correct senses.

This approach has its problems, however. First,
it assumes a complete and consistent set of labels.
WordNet, used in the majority of studies, does
cover several 10,000 lemmas, but has been criti-
cised for both its coverage and granularity. Second,
WSD requires annotation for each sense and lemma,
leading to an “annotation bottleneck”. A number

of technical solutions have been suggested regard-
ing the second problem (Ando and Zhang, 2005;
Navigli and Ponzetto, 2012), but not for the first.

In 2009, McCarthy and Navigli address both
problems by proposing a fundamentally different
approach, called Lexical Substitution (McCarthy
and Navigli, 2009) which avoids capturing a word’s
meaning by a single label. Instead, annotators are
asked to list, for each instance of a word, one or
more alternative words or phrases to be substituted
for the target in this particular context. This setup
provides a number of benefits over WSD. It al-
lows characterising word meaning without using
an ontology and can be obtained easily from native
speakers through crowdsourcing. Work on mod-
elling Lexical Substitution data has also assumed a
different focus from WSD. It tends to see the predic-
tion of substitutes along the lines of compositional
lexical semantics, concentrating on explaining how
word meaning is modulated in context (Mitchell
and Lapata, 2010).

There are, however, important shortcomings of
the work in the Lexical Substitution paradigm. All
existing datasets (McCarthy and Navigli, 2009;
Sinha and Mihalcea, 2014; Biemann, 2013; Mc-
Carthy et al., 2013) are either comparatively small,
are “lexical sample” datasets, or both. “Lexical
sample” datasets consist of sample sentences for
each target word drawn from large corpora, with
just one target word substituted in each sentence. In
WSD, “lexical sample” datasets contrast with “all-
words” annotation, in which all content words in a
text are annotated for sense (Palmer et al., 2001).
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In this paper, we present the first large “all-
words” Lexical Substitution dataset for English. It
provides substitutions for more than 30,000 words
of running text from two domains of MASC (Ide et
al., 2008; Ide et al., 2010), a subset of the Ameri-
can National Corpus (http://www.anc.org)
that is freely available and has (partial) manual
annotation. The main advantage of the all-words
setting is that it provides a realistic frequency distri-
bution of target words and their senses. We use this
to empirically investigate (a) the nature of lexical
substitution and (b) the nature of the corpus, seen
through the lens of word meaning in context.

2 Related Work

2.1 Lexical Substitution: Data

The original “English Lexical Substitution” dataset
(McCarthy and Navigli, 2009) comprises 200 target
content words (balanced numbers of nouns, verbs,
adjectives and adverbs). Targets were explicitly se-
lected to exhibit interesting ambiguities. For each
target, 10 sentences were chosen (mostly at ran-
dom, but in part by hand) from the English Internet
Corpus (Sharoff, 2006) and presented to 5 anno-
tators to collect substitutes. Its total size is 2,000
target instances. Sinha and Mihalcea (2014) pro-
duced a small pilot dataset (500 target instances) for
all-words substitution, asking three annotators to
substitute all content words in presented sentences.

Biemann (2013) first investigated the use of
crowdsourcing, developing a three-task bootstrap-
ping design to control for noise. His study covers
over 50,000 instances, but these correspond only to
397 targets, all of which are high-frequency nouns.
Biemann clusters the resulting substitutes into word
senses. McCarthy et al. (2013) applied lexical sub-
stitution in a cross-lingual setting, annotating 130
of the original McCarthy and Navigli targets with
Spanish substitutions (i. e., translations).

2.2 Lexical Substitution: Models

The LexSub task at SEMEVAL 2007 (McCarthy
and Navigli, 2009) required systems to both de-
termine substitution candidates and choose con-
textual substitutions in each case. Erk and Padó
(2008) treated the gold substitution candidates as
given and focused on the context-specific ranking
of those candidates. In this form, the task has been
addressed through three types of (mostly unsuper-
vised) approaches. The first group computes a sin-
gle type representation and modifies it according

to sentence context (Erk and Padó, 2008; Thater et
al., 2010; Thater et al., 2011; Van de Cruys et al.,
2011). The second group of approaches clusters
instance representations (Reisinger and Mooney,
2010; Dinu and Lapata, 2010; Erk and Padó, 2010;
O’Séaghdha and Korhonen, 2011). The third op-
tion is to use a language model (Moon and Erk,
2013). Recently, supervised models have emerged
(Biemann 2013; Szarvas et al., 2013a,b).

3 COINCO – The MASC All-Words
Lexical Substitution Corpus1

Compared to, e. g., WSD, there still is little gold-
annotated data for lexical substitution. With the
exception of the dataset created by Biemann (2013),
all existing lexical substitution datasets are fairly
small, covering at most several thousand instances
and few targets which are manually selected. We
aim to fill this gap, providing a dataset that mirrors
the actual corpus distribution of targets in sentence
context and is sufficiently large to enable a detailed,
lexically specific analysis of substitution patterns.

3.1 Source Corpus Choice
For annotation, we chose a subset of the “Manually
Annotated Sub-Corpus” MASC (Ide et al., 2008;
Ide et al., 2010) which is “equally distributed across
19 genres, with manually produced or validated
annotations for several layers of linguistic phenom-
ena”, created with the purpose of being “free of
usage and redistribution restrictions”. We chose
this corpus because (a) our analyses can profit from
the preexisting annotations and (b) we can release
our annotations as part of MASC.

Since we could not annotate the complete MASC,
we selected (complete) text documents from two
prominent genres: news (18,942 tokens) and fiction
(16,605 tokens). These two genres are both rele-
vant for NLP and provide long, coherent documents
that are appropriate for all-words annotation. We
used the MASC part-of-speech annotation to iden-
tify all content words (verbs, nouns, adjectives, and
adverbs), which resulted in a total of over 15,000
targets for annotation. This method differs from
Navigli and McCarthy’s (2009) in two crucial re-
spects: we annotate all instances of each target, and
include all targets regardless of frequency or level
of lexical ambiguity. We believe that our corpus is
considerably more representative of running text.

1Available as XML-formatted corpus “Concepts in Con-
text” (COINCO) from http://goo.gl/5C0jBH. Also
scheduled for release as part of MASC.
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3.2 Crowdsourcing

We used the Amazon Mechanical Turk (AMT) plat-
form to obtain substitutes by crowdsourcing. Inter-
annotator variability and quality issues due to non-
expert annotators are well-known difficulties (see,
e. g., Fossati et al. (2013)). Our design choices
were shaped by “best practices in AMT”, including
Mason and Suri (2012) and Biemann (2013).

Defining HITs. An AMT task consists of Human
Intelligence Tasks (HITs), each of which is sup-
posed to represent a minimal, self-contained task.
In our case, potential HITs were annotations of
(all target words in) one sentence, or just one tar-
get word. The two main advantages of annotating
a complete sentence at a time are (a) less over-
head, because the sentence has only to be read
once; (b) higher reliability, since all words within a
sentence will be annotated by the same person.

Unfortunately, presenting individual sentences
as HITs also means that all sentences pay the same
amount irrespective of their length. Since long sen-
tences require more effort, they are likely to receive
less attention. We therefore decided to generally
present two random target words per HIT, and one
word in the case of “leftover” singleton targets.

In the HITs, AMT workers (“turkers”) saw the
highlighted target word in context. Since one sen-
tence was often insufficient to understand the target
fully, we also showed the preceding and the follow-
ing sentence. The task description asked turkers to
provide (preferably single-word) substitutes for the
target that “would not change the meaning”. They
were explicitly allowed to use a “more general term”
in case a substitute was hard to find (e. g., dog for
the target dachshund, cf. basic level effects: Rosch
et al. (1976)). Turkers were encouraged to produce
as many replacements as possible (up to 5). If they
could not find a substitute, they had to check one of
the following radio buttons: “proper name”, “part
of a fixed expression”, “no replacement possible”,
“other problem (with description)”.

Improving Reliability. Another major problem
is reliability. Ideally, the complete dataset should
be annotated by the same group of annotators, but
turkers tend to work only on a few HITs before
switching to other AMT jobs. Following an idea
of Biemann and Nygaard (2010), we introduced a
two-tier system of jobs aimed at boosting turker
loyalty. A tier of “open tasks” served to identify
reliable turkers by manually checking their given

substitutes for plausibility. Such turkers were then
invited to the second, “closed task” tier, with a
higher payment. In both tiers, bonus payments
were offered to those completing full HIT sets.

For each target, we asked 6 turkers to provide
substitutions. In total, 847 turkers participated suc-
cessfully. In the open tasks, 839 turkers submitted
12,158 HITs (an average of 14.5 HITs). In the
closed tasks, 25 turkers submitted 42,827 HITs (an
average of 1,713 HITs), indicating the substantial
success of our turker retention scheme.

Cost. In the open task, each HIT was paid for
with $ 0.03, in the closed task the wage was $ 0.05
per HIT. The bonus payment for completing a HIT

set amounted to $ 2 ($ 1) in the open (closed) tasks.
The average cost for annotations was $ 0.22 for one
target word instance and $ 0.02 for one substitute.
The total cost with fees was ~$ 3,400.

3.3 COINCO: Corpus and Paraset Statistics

We POS-tagged and lemmatised targets and substi-
tutes in sentence context with TreeTagger (Schmid,
1994). We manually lemmatised unknown words.
Our annotated dataset comprises a total of 167,336
responses by turkers for 15,629 target instances in
2,474 sentences (7,117 nouns, 4,617 verbs, 2,470
adjectives, and 1,425 adverbs). As outlined above,
targets are roughly balanced across the two gen-
res (news: 8,030 instances in 984 sentences; fic-
tion: 7,599 instances in 1,490 sentences). There are
3,874 unique target lemmas; 1,963 of these occur
more than once. On this subset, there is a mean of
6.99 instances per target lemma. To our knowledge,
our corpus is the largest lexical substitution dataset
in terms of lemma coverage.

Each target instance is associated with a paraset
(i. e., the set of substitutions or paraphrases pro-
duced for a target in its context) with an average
size of 10.71. Turkers produced an average of
1.68 substitutions per target instance.2 Despite
our instructions to provide single-word substitutes,
11,337 substitutions contain more than one word.

3.4 Inter-Annotator Agreement

McCarthy and Navigli (2009) introduced two inter-
annotator agreement (IAA) measures for their
dataset. The first one is pairwise agreement (PA),

2Note that a small portion of the corpus was annotated by
more than 6 annotators.
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dataset # targets PA mode-% PAm

MN09 1,703 27.7 73.9 50.7
SM13 550 15.5 N/A N/A
COINCO (complete) 15,400 19.3 70.9 44.7
COINCO (subset) 2,828 24.6 76.4 50.9

Table 1: Pairwise turker agreement (mode-%: per-
centage of target instances with a mode)

measuring the overlap of produced substitutions:

PA =
∑
t∈T

∑
〈st,s′

t〉 ∈Ct

|st ∩ s′t|
|st ∪ s′t|

· 1
|Ct| · |T |

where t is a target in our target set T , st is the
paraset provided by one turker for t, and Ct is the
set comprising all pairs of turker-specific parasets
for t. Only targets with non-empty parasets (i. e.,
not marked by turkers as a problematic target) from
at least two turkers are included. The second one
is mode agreement (PAm), the agreement of an-
notators’ parasets with the mode (the unique most
frequent substitute) for all targets where one exists:

PAm =
∑

t∈Tm

∑
st ∈St

[m ∈ st] · 1
|st| · |Tm|

where Tm is the set of all targets with some mode
m and St is the set of all parasets for target t. The
Iverson bracket notation [m ∈ st] denotes 1 if
mode m is included in st (otherwise 0).

Table 1 compares our dataset to the results by
McCarthy and Navigli (2009, MN09) and Sinha
and Mihalcea (2014, SM13). The scores for
our complete dataset (row 3) are lower than Mc-
Carthy and Navigli’s both for PA (−8 %) and PAm

(−6 %), but higher than Sinha and Mihalcea’s, who
also note the apparent drop in agreement.3

We believe that this is a result of differences in
the setup rather than an indicator of low quality:
Note that PA will tend to decrease both in the face
of more annotators and of more substitutes. Both
of these factors are present in our setup. To test this
interpretation, we extracted a subset of our data that
is comparable to McCarthy and Navigli’s regard-
ing these factors. It comprises all target instances
where (a) exactly 6 turkers gave responses (9,521
targets), and (b) every turker produced between one
and three substitutes (5,734 targets). The results for
this subset (row 4) are much more similar to those
of McCarthy and Navigli: the pairwise agreement

3Please see McCarthy and Navigli (2009) for a possible
explanation of the generally low IAA numbers in this field.

relation all verb noun adj adv

syn 9.4 12.5 7.7 8.0 10.4

direct-hyper 6.6 9.3 7.6 N/A N/A
direct-hypo 7.5 11.6 8.0 N/A N/A
trans-hyper 3.2 2.8 4.7 N/A N/A
trans-hypo 3.0 3.7 3.8 N/A N/A

wn-other 68.9 60.7 66.5 88.5 85.4

not-in-wn 2.1 0.9 2.2 3.4 4.2

Table 2: Target–substitute relations in percentages,
overall (all) and by POS. Note: WordNet contains
no hypo-/hypernyms for adjectives and adverbs.

differs only by 3 %, and the mode agreement is
almost identical. We take these figures as indica-
tion that crowdsourcing can serve as a sufficiently
reliable way to create substitution data; note that
Sinha and Mihalcea’s annotation was carried out
“traditionally” by three annotators.

Investigating IAA numbers by target POS and by
genre, we found only small differences (≤ 2.6 %)
among the various subsets, and no patterns.

4 Characterising Lexical Substitutions

This section examines the collected lexical substi-
tutions, both quantitatively and qualitatively. We
explore three questions: (a) What lexical relations
hold between targets and their substitutes? (b) Do
parasets resemble word senses? (c) How similar
are the parasets that correspond to the same word
sense of a target? These questions have not been
addressed before, and we would argue that they
could not be addressed before, because previous
corpora were either too small or were sampled in a
way that was not conducive to this analysis.

We use WordNet (Fellbaum, 1998), release 3.1,
as a source for both lexical relations and word
senses. WordNet is the de facto standard in NLP

and is used for both WSD and broader investiga-
tions of word meaning (Navigli and Ponzetto, 2012;
Erk and McCarthy, 2009). Multi-word substitutes
are excluded from all analyses.4

4.1 Relating Targets and Substitutes
We first look at the most canonical lexical relations
between a target and its substitutes. Table 2 lists the
percentage of substitutes that are synonyms (syn),
direct/transitive (direct-/trans-) hypernyms (hyper)

4All automatic lexical substitution approaches, including
Section 5, omit multi-word expressions. Also, they can be
expected to have WordNet coverage and normalisation issues,
which would constitute a source of noise for this analysis.
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sentence substitutes

Now, how can I help the elegantly mannered friend of
my Nepthys and his surprising young charge ?

dependent, person, task, lass, protégé, effort, companion

The distinctive whuffle of pleasure rippled through the
betas on the bridge, and Rakal let loose a small growl,
as if to caution his charges against false hope.

dependent, command, accusation, private, companion, follower,
subordinate, prisoner, teammate, ward, junior, underling, enemy,
group, crew, squad, troop, team, kid

Table 3: Context effects below the sense level: target noun “charge” (wn-other shown in italics)

and hyponyms (hypo) of the target. If a substitute
had multiple relations to the target, the shortest path
from any of its senses to any sense of the target
was chosen. The table also lists the percentage of
substitutes that are elsewhere in WordNet but not
related to the target (wn-other) and substitutes that
are not covered by WordNet (not-in-wn).

We make three main observations. First, Word-
Net shows very high coverage throughout – there
are very few not-in-wn substitutes. Second, the per-
centages of synonyms, hypernyms and hyponyms
are relatively similar (even though the annotation
guidelines encouraged the annotation of hyponyms
over hypernyms), but relatively small. Finally, and
most surprisingly, the vast majority of substitutes
across all parts of speech are wn-other.

A full analysis of wn-other is beyond the cur-
rent paper. But a manual analysis of wn-other
substitutes for 10 lemmas5 showed that most of
them were context-specific substitutes that can dif-
fer even when the sense of the target is the same.
This is illustrated in Table 3, which features two
occurrences of the noun “charge” in the sense of
“person committed to your care”. But because of
the sentence context, the first occurrence got sub-
stitutes like “protégé”, while the second one was
paraphrased by words like “underling”. We also
see evidence of annotator error (e. g., “command”
and “accusation” in the second sentence).6 Dis-
counting such instances still leaves a prominent
role for correct wn-other cases.

But are these indeed contextual modulation ef-
fects below the sense level, or are parasets funda-
mentally different from word senses? We perform
two quantitative analyses to explore this question.

4.2 Comparing Parasets to Synsets

To what extent do parasets follow the boundaries
of WordNet senses? To address this question, we

5We used the nouns business, charge, place, way and the
verbs call, feel, keep, leave, show, stand.

6A manual analysis of the same 10 lemmas showed only
38 out of 1,398 (0.027) of the substitutes to be erroneous.

paraset–sense mapping class verb noun adj adv

mappable 90.3 73.5 33.0 49.6
uniquely mappable 63.1 57.5 24.3 41.3

Table 4: Ratios of (uniquely) mappable parasets

establish a mapping between parasets and synsets.
Since gold standard word senses in MASC are lim-
ited to high-frequency lemmas and cover only a
small part of our data, we create a heuristic map-
ping that assigns each paraset to that synset of its
target with which it has the largest intersection. We
use extended WordNet synsets that include direct
hypo- and hypernyms to achieve better matches
with parasets. We call a paraset uniquely mappable
if it has a unique best WordNet match, and map-
pable if one or more best matches exist. Table 4
shows that most parasets are mappable for nouns
and verbs, but not for adjectives or adverbs.

We now focus on mappable parasets for nouns
and verbs. To ensure that this does not lead to a
confounding bias, we performed a small manual
study on the 10 noun and verb targets mentioned
above (247 parasets). We found 25 non-mappable
parasets, which were due to several roughly equally
important reasons: gaps in WordNet, multi-word
expressions, metaphor, problems of sense granular-
ity, and annotator error. We also found 66 parasets
with multiple best matches. The two dominant
sources were target occurrences that evoked more
than one sense and WordNet synset pairs with very
close meanings. We conclude that excluding non-
mappable parasets does not invalidate our analysis.

To test whether parasets tend to map to a single
synset, we use a cluster purity test that compares
a set of clusters C to a set of gold standard classes
C ′. Purity measures the accuracy of each cluster
with respect to its best matching gold class:

purity(C, C ′) =
1
N

K∑
k=1

max
k′ |Ck ∩ C ′

k′ |

where N is the total number of data points, K is the
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measure verbs nouns

cluster purity (%) 75.1 81.2

common core size within sense 1.84 2.21
common core size across senses 0.39 0.41
paraset size 6.89 6.29

Table 5: Comparing uniquely mappable parasets to
senses: overlap with best WordNet match as cluster
purity (top), and intersection size of parasets with
and without the same WordNet match (bottom)

number of clusters, and C ′
k′ is the gold class that

has the largest overlap with cluster Ck. In our case,
C is the set of mappable parasets7, C ′ the set of
extended WordNet synsets, and we only consider
substitutes that occur in one of the target’s extended
synsets (these are the data points). This makes the
current analysis complementary to the relational
analysis in Table 2.8

The result, listed in the first row of Table 5,
shows that parasets for both verbs and nouns have
a high purity, that is, substitutes tend to focus on a
single sense. This can be interpreted as saying that
annotators tend to agree on the general sense of a
target. Roughly 20–25 % of substitutes, however,
tend to stem from a synset of the target that is not
the best WordNet match. This result comes with
the caveat that it only applies to substitutes that
are synonyms or direct hypo- and hypernyms of
the target. So in the next section, we perform an
analysis that also includes wn-other substitutes.

4.3 Similarity Between Same-Sense Parasets
We now use the WordNet mappings from the pre-
vious section to ask how (dis-)similar parasets are
that represent the same word sense. We also try to
identify the major sources for dissimilarity.

We quantify paraset similarity as the common
core, that is, the intersection of all parasets for
the same target that map onto the same extended
WordNet synset. Surprisingly, the common core
is mostly non-empty (in 85.6 % of all cases), and
contains on average around two elements, as the
second row in Table 5 shows. For this analysis, we
only use uniquely mappable parasets. In relation
to the average paraset size (see row 4), this means
that one quarter to one third of the substitutes are

7For non-uniquely mappable parasets, the purity is the
same for all best-matching synsets.

8Including wn-other substitutes would obscure whether
low purity means substitutes from a mixture of senses (which
we are currently interested in) or simply a large number of
wn-other substitutes (which we have explored above).

set elements

synset \ core feel, perceive, comprehend
synset ∩ core sense
core \ synset notice
non-core substitutes detect, recall, perceive, experi-

ence, note, realize, discern

Table 6: Target feel.v.03: synset and common core

shared among all instances of the same target–sense
combination. In contrast, the common core for
all parasets of targets that map onto two or more
synsets contains only around 0.4 substitutes (see
row 3) – that is, it is empty more often than not.

At the same time, if about one quarter to one
third of the substitutes are shared, this means that
there are more non-shared than shared substitutes
even for same-sense parasets. Some of these cases
result from small samples: Even 6 annotators can-
not always exhaust all possible substitutes. For
example, the phrase “I’m starting to see more busi-
ness transactions” occurs twice in the corpus. The
two parasets for “business” share the same best
WordNet sense match, but they have only 3 shared
and 7 non-shared substitutes. This is even though
the substitutes are all valid and apply to both in-
stances. Other cases are instances of the context
sensitivity of the Lexical Substitution task as dis-
cussed above. Table 6 illustrates on an example
how the common core of a target sense relates to
the corresponding synset; note the many context-
specific substitutes outside the common core.

5 Ranking Paraphrases

While there are several studies on modelling lexi-
cal substitutes, almost all reported results use Mc-
Carthy and Navigli’s SEMEVAL 2007 dataset. We
now compare the results of three recent computa-
tional models on COINCO (our work) and on the
SEMEVAL 2007 dataset to highlight similarities
and differences between the two datasets.

Models. We consider the paraphrase ranking
models of Erk and Padó (2008, EP08), Thater et
al. (2010, TFP10) and Thater et al. (2011, TFP11).
These models have been analysed by Dinu et al.
(2012) as instances of the same general framework
and have been shown to deliver state-of-the-art per-
formance on the SEMEVAL 2007 dataset, with best
results for Thater et al. (2011).

The three models share the idea to represent the
meaning of a target word in a specific context by
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corpus syntactically structured syntactically filtered bag of words random

TFP11 TFP10 EP08 TFP11/EP08 TFP10 TFP11/EP08 TFP10

COINCO
context 47.8 46.0 47.4 47.4 41.9 46.2 40.8 33.0baseline 46.2 44.6 46.2 45.8 38.8 44.7 37.5

SEMEVAL 2007 context 52.5 48.6 49.4 50.1 44.7 48.0 42.6 30.0baseline 43.7 42.7 43.7 44.4 38.0 42.7 35.8

COINCO Subset context 40.3 37.7 39.0 39.2 34.1 37.7 32.5 23.7baseline 36.7 35.7 36.7 36.4 30.6 35.4 28.0

Table 7: Corpus comparison in terms of paraphrase ranking quality (GAP percentage). SEMEVAL results
from Thater et al. (2011). “Context”: full models, “baseline”: uncontextualised target-substitute similarity.

modifying the target’s basic meaning vector with
information from the vectors of the words in the
target’s direct syntactic context. For instance, the
vector of “coach” in the phrase “the coach derailed”
is obtained by modifying the basic vector represen-
tation of “coach” through the vector of “derail”, so
that the resulting contextualised vector reflects the
train car sense of “coach”.

We replicate the setup of Thater et al. (2011)
to make our numbers directly comparable. We
consider three versions of each model: (a) syntacti-
cally structured models use vectors which record
co-occurrences based on dependency triples, ex-
plicitly recording syntactic role information within
the vectors; (b) syntactically filtered models also
use dependency-based co-occurrence information,
but the syntactic role is not explicitly represented in
the vector representations; (c) bag-of-words mod-
els use a window of ± 5 words. All co-occur-
rence counts are extracted from the English Giga-
word corpus (http://catalog.ldc.upenn.
edu/LDC2003T05), analysed with Stanford de-
pendencies (de Marneffe et al., 2006).

We apply the models to our dataset as follows:
We first collect all substitutes for all occurrences of
a target word in the corpus. The task of our models
for each target instance is then to rank the candi-
dates so that the actual substitutes are ranked higher
than the rest. We rank candidates according to the
cosine similarity between the contextualised vec-
tor of the target and the vectors of the candidates.
Like most previous approaches, we compare the
resulting ranked list with the gold standard annota-
tion (the paraset of the target instance), using gen-
eralised average precision (Kishida, 2005, GAP),
and using substitution frequency as weights. GAP

scores range between 0 and 1; a score of 1 indicates
a perfect ranking in which all correct substitutes
precede all incorrect ones, and correct high-weight
substitutes precede low-weight substitutes.

Results. The upper part of Table 7 shows results
for our COINCO corpus and the previous stan-
dard dataset, SEMEVAL 2007. “Context” refers to
the full models, and “baseline” to global, context-
unaware ranking based on the semantic similarity
between target and substitute. Baselines are model-
specific since they re-use the models’ vector repre-
sentations. Note that EP08 and TFP11 are identical
unless syntactically structured vectors are used, and
their baselines are identical.

The behaviour of the baselines on the two cor-
pora is quite similar: random baselines have GAPs
around 0.3, and uncontextualised baselines have
GAPs between 0.35 and 0.46. The order of the
models is also highly parallel: the syntactically
structured TFP11 is the best model, followed by
its syntactically filtered version and syntactically
structured EP08. All differences between these
models are significant (p < 0.01) for both corpora,
as computed with bootstrap resampling (Efron and
Tibshirani, 1993). That is, the model ranking on
SEMEVAL is replicated on COINCO.

There are also substantial differences between
the two corpora, though. Most notably, all models
perform substantially worse on COINCO. This
is true in absolute terms (we observe a loss of 2–
5 % GAP) but even more dramatic expressed as the
gain over the uninformed baselines (almost 9 % for
TFP11 on SEMEVAL but only 1.2 % on COINCO).
All differences between COINCO and SEMEVAL

are again significant (p < 0.01).
We see three major possible reasons for these

differences: variations in (a) the annotation setup
(crowdsourcing, multiple substitutes); (b) the sense
distribution; (c) frequency and POS distributions
between the two corpora. We focus on (c) since it
can be manipulated most easily. SEMEVAL con-
tains exactly 10 instances for all targets, while CO-
INCO reflects the Zipf distribution of “natural” cor-
pora, with many targets occurring only once. Such
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corpora are easier to model in terms of absolute
performance, because the paraphrase lists for rare
targets contain less false positives for each instance.
For hapax legomena, the set of substitution candi-
dates is identical to the gold standard, and the only
way to receive a GAP score lower than 1 for such
targets is to rank low-weight substitutes ahead of
high-weight substitutes. Not surprisingly, the mean
GAP score of the syntactically structured TFP11
for hapax legomena is 0.863. At the same time,
such corpora make it harder for full models to out-
perform uncontextualised baselines; the best model
(TFP11) only outperforms the baseline by 1.6 %.

To neutralise this structural bias, we created
“SEMEVAL-like” subsets of COINCO (collectively
referred to as the COINCO Subset) by extracting
all COINCO targets with at least 10 instances (141
nouns, 101 verbs, 50 adjectives, 36 adverbs) and
building 5 random samples by drawing 10 instances
for each target. These samples match SEMEVAL in
the frequency distribution of its targets. To account
for the unequal distribution of POS in the samples,
we compute GAP scores for each POS separately
and calculate these GAP scores’ average.

The results for the various models on the CO-
INCO Subset in the bottom part of Table 7 show
that the differences between COINCO and SE-
MEVAL are not primarily due to the differences
in target frequencies and POS distribution – the
COINCO Subset is actually more different to SE-
MEVAL than the complete COINCO. Strikingly,
the COINCO Subset is very difficult, with a ran-
dom baseline of 24 % and model performances be-
low 37 % (baselines) and up to 40 % (full models),
which indicates that the set of substitutes in CO-
INCO is more varied than in SEMEVAL as an effect
of the annotation setup. Encouragingly, the margin
between full models and baselines is larger than on
the complete COINCO and generally amounts to
2–4 % (3.6 % for TFP11). That is, the full models
are more useful on the COINCO corpus than they
appeared at first glance; however, their effect still
remains much smaller than on SEMEVAL.

6 Conclusion

This paper describes COINCO, the first large-scale
“all-words” lexical substitution corpus for English.
It was constructed through crowdsourcing on the
basis of MASC, a corpus of American English.

The corpus has two major advantages over previ-
ous lexical substitution corpora. First, it covers con-

tiguous documents rather than selected instances.
We believe that analyses on our corpus generalise
better to the application domain of lexical substitu-
tion models, namely random unseen text. In fact,
we find substantial differences between the perfor-
mances of paraphrase ranking models for COINCO

and the original SEMEVAL 2007 LexSub dataset:
the margin of informed methods over the baselines
are much smaller, even when controlling for target
frequencies and POS distribution. We attribute this
divergence at least in part to the partially manual se-
lection strategy of SEMEVAL 2007 (cf. Section 2.1)
which favours a more uniform distribution across
senses, while our whole-document annotation faces
the “natural” distribution skewed towards predom-
inant senses. This favours the non-contextualised
baseline models, consistent with our observations.
At the very least, our findings demonstrate the sen-
sitivity of evaluation results on corpus properties.

The second benefit of our corpus is that its size
enables more detailed analyses of lexical substi-
tution data than previously possible. We are able
to investigate the nature of the paraset, i. e., the
set of lexical substitutes given for one target in-
stance, finding that lexical substitution sets corre-
spond fairly well to WordNet sense distinctions
(parasets for the same synset show high similarity,
while those for different senses do not). In addition,
however, we observe a striking degree of context-
dependent variation below the sense level: the ma-
jority of lexical substitutions picks up fine-grained,
situation-specific meaning components that do not
qualify as sense distinctions in WordNet.

Avenues for future work include a more detailed
analysis of the substitution data to uncover genre-
and domain-specific patterns and the development
of lexical substitution models that take advantage
of the all-words substitutes for global optimisation.
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