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Abstract

While inversion transduction grammar (ITG)
is well suited for modeling ordering shifts
between languages, how to make applying
the two reordering rules (i.e., straight and
inverted) dependent on actual blocks being
merged remains a challenge. Unlike previous
work that only uses boundary words, we pro-
pose to use recursive autoencoders to make
full use of the entire merging blocks alter-
natively. The recursive autoencoders are ca-
pable of generating vector space representa-
tions for variable-sized phrases, which enable
predicting orders to exploit syntactic and se-
mantic information from a neural language
modeling’s perspective. Experiments on the
NIST 2008 dataset show that our system sig-
nificantly improves over the MaxEnt classifier
by 1.07 BLEU points.

1 Introduction

Phrase-based models (Koehn et al., 2003; Och and
Ney, 2004) have been widely used in practical ma-
chine translation (MT) systems due to their effec-
tiveness, simplicity, and applicability. First, as se-
quences of consecutive words, phrases are capable
of memorizing local word selection and reorder-
ing, making them an effective mechanism for trans-
lating idioms or translations with word insertions
or omissions. Moreover, n-gram language models
can be seamlessly integrated into phrase-based de-
coders since partial translations grow left to right
in decoding. Finally, phrase-based systems can be
applicable to most domains and languages, espe-

cially for resource-scarce languages without high-
accuracy parsers.

However, as phrase-based decoding casts transla-
tion as a string concatenation problem and permits
arbitrary permutations, it proves to be NP-complete
(Knight, 1999). Therefore, phrase reordering mod-
eling has attracted intensive attention in the past
decade (e.g., Och et al., 2004; Tillman, 2004; Zens
et al., 2004; Al-Onaizan and Papineni, 2006; Xiong
et al., 2006; Koehn et al., 2007; Galley and Man-
ning, 2008; Feng et al., 2010; Green et al., 2010;
Bisazza and Federico, 2012; Cherry, 2013).

Among them, reordering models based on inver-
sion transduction grammar (ITG) (Wu, 1997) are
one of the important ongoing research directions.
As a formalism for bilingual modeling of sentence
pairs, ITG is particularly well suited to predicting
ordering shifts between languages. As a result, a
number of authors have incorporated ITG into left-
to-right decoding to constrain the reordering space
and reported significant improvements (e.g., Zens et
al., 2004; Feng et al., 2010). Along another line,
Xiong et al. (2006) propose a maximum entropy
(MaxEnt) reordering model based on ITG. They use
the CKY algorithm to recursively merge two blocks
(i.e., a pair of source and target strings) into larger
blocks, either in a straight or an inverted order. Un-
like lexicalized reordering models (Tillman, 2004;
Koehn et al., 2007; Galley and Manning, 2008) that
are defined on individual bilingual phrases, the Max-
Ent ITG reordering model is a two-category classi-
fier (i.e., straight or inverted) for two arbitrary bilin-
gual phrases of which the source phrases are adja-
cent. This potentially alleviates the data sparseness
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problem since there are usually a large number of
reordering training examples available (Xiong et al.,
2006). As a result, the MaxEnt ITG model and its
extensions (Xiong et al., 2008; Xiong et al., 2010)
have achieved competing performance as compared
with state-of-the-art phrase-based systems.

Despite these successful efforts, the ITG reorder-
ing classifiers still face a major challenge: how to
extract features from training examples (i.e., a pair
of bilingual strings). It is hard to decide which words
are representative for predicting reordering, either
manually or automatically, especially for long sen-
tences. As a result, Xiong et al. (2006) only use
boundary words (i.e., the first and the last words in
a string) to predict the ordering. What if we look
inside? Is it possible to avoid manual feature engi-
neering and learn semantic representations from the
data?

Fortunately, the rapid development of intersect-
ing deep learning with natural language processing
(Bengio et al., 2003; Collobert and Weston, 2008;
Collobert et al., 2011; Glorot et al., 2011; Bordes et
al., 2011; Socher et al., 2011a; Socher et al., 2011b;
Socher et al., 2011c; Socher et al., 2012; Bordes et
al., 2012; Huang et al., 2012; Socher et al., 2013;
Hermann and Blunsom, 2013) brings hope for alle-
viating this problem. In these efforts, natural lan-
guage words are represented as real-valued vectors,
which can be naturally fed to neural networks as in-
put. More importantly, it is possible to learn vec-
tor space representations for multi-word phrases us-
ing recursive autoencoders (Socher et al., 2011c),
which opens the door to leveraging semantic repre-
sentations of phrases in reordering models from a
neural language modeling point of view.

In this work, we propose an ITG reordering clas-
sifier based on recursive autoencoders. The neu-
ral network consists of four autoencoders (i.e., the
first source phrase, the first target phrase, the sec-
ond source phrase, and the second target phrase)
and a softmax layer. The recursive autoencoders,
which are trained on reordering examples extracted
from word-aligned bilingual corpus, are capable
of producing vector space representations for arbi-
trary multi-word strings in decoding. Therefore,
our model takes the whole phrases rather than only
boundary words into consideration when predict-
ing phrase permutations. Experiments on the NIST

2008 dataset show that our system significantly im-
proves over the MaxEnt classifier by 1.07 in terms
of case-insensitive BLEU score.

2 Recursive Autoencoders for ITG-based
Translation

2.1 Inversion Transduction Grammar
Inversion transduction grammar (ITG) (Wu, 1997)
is a formalism for synchronous parsing of bilingual
sentence pairs. Xiong et al. (2006) apply bracketing
transduction grammar (BTG), which is a simplified
version of ITG, to phrase-based translation using the
following production rules:

X → [X1, X2] (1)

X → 〈X1, X2〉 (2)

X → f/e (3)

where X is a block that consists of a pair of source
and target strings, f is a source phrase, and e is a tar-
get phrase. X1 and X2 are two neighboring blocks
of which the two source phrases are adjacent. While
rule (1) merges two target phrases in a straight or-
der, rule (2) merges in an inverted order. Besides
these two reordering rules, rule (3) is a lexical rule
that translates a source phrase f into a target phrase
e. This is exactly a bilingual phrase used in conven-
tional phrase-based systems.

An ITG derivation, which consists of a sequence
of production rules, explains how a sentence pair is
generated simultaneously. Figure 1 shows an ITG
derivation for a Chinese sentence and its English
translation. We distinguish between two types of
blocks:

1. atomic blocks: blocks generated by applying
lexical rules,

2. composed blocks: blocks generated by apply-
ing reordering rules.

In Figure 1, the sentence pair is segmented into
five atomic blocks:

X0,3,0,3 : wo you yi ge↔ I have a

X3,5,5,6 : cong mei you↔ never

X5,8,6,8 : jian guo de↔ seen before

X8,10,3,5 : nv xing peng you↔ female friend

X10,11,8,9 : .↔ .
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(1) X0,11,0,9 → [X0,10,0,8, X10,11,8,9]
(2) X0,10,0,8 → [X0,3,0,3, X3,10,3,8]
(3) X0,3,0,3 → wo you yi ge / I have a
(4) X3,10,3,8 → 〈X3,8,5,8, X8,10,3,5〉
(5) X3,8,5,8 → [X3,5,5,6, X5,8,6,8]
(6) X3,5,5,6 → cong mei you / never
(7) X5,8,6,8 → juan guo de / seen before
(8) X8,10,3,5 → nv xing peng you/ female friend
(9) X10,11,8,9 → . / .

Figure 1: An ITG derivation for a Chinese sentence and its translation. We useXi,j,k,l = 〈f j
i , e

l
k〉 to represent a block.

Our neural ITG reordering model first assigns vector space representations to single words and then produces vectors
for phrases using recursive autoencoders, which form atomic blocks. The atomic blocks are recursively merged into
composed blocks, the vector space representations of which are produced by recursive autoencoders simultaneously.
The neural classifier makes decisions at each node using the vectors of all its descendants.

569



where X3,5,5,6 indicates that the block consists of a
source phrase spanning from position 3 to position 5
(i.e., “cong mei you”) and a target phrase spanning
from position 5 to position 6 (i.e., “never”). More
formally, a block Xi,j,k,l = 〈f ji , elk〉 is a pair of a
source phrase f ji = fi+1 . . . fj and a target phrase
elk = ek+1 . . . el. Obviously, these atomic blocks
are generated by lexical rules.

Two blocks of which the source phrases are adja-
cent can be merged into a larger one in two ways:
concatenating the target phrases in a straight order
using rule (1) or in an inverted order using rule (2).
For example, atomic blocks X3,5,5,6 and X5,8,6,8 are
merged into a composed block X3,8,5,8 in a straight
order, which is further merged with an atomic block
X8,10,3,5 into another composed block X3,10,3,8 in
an inverted order. This process recursively proceeds
until the entire sentence pair is generated.

The major challenge of applying ITG to machine
translation is to decide when to merge two blocks
in a straight order and when in an inverted order.
Therefore, the ITG reordering model can be seen as
a two-category classifier P (o|X1, X2), where o ∈
{straight, inverted}.

A naive way is to assign fixed probabilities to two
reordering rules, which is referred to as flat model
by Xiong et al. (2006):

P (o|X1, X2) =

{
p o = straight
1− p o = inverted

(4)

The drawback of the flat model is ignoring the
actual blocks being merged. Intuitively, different
blocks should have different preferences between
the two orders.

To alleviate this problem, Xiong et al. (2006) pro-
pose a maximum entropy (MaxEnt) classifier:

P (o|X1, X2) =
exp(θ · h(o,X1, X2))∑
o′ exp(θ · h(o′, X1, X2))

(5)

where h(·) is a vector of features defined on the
blocks and the order, θ is a vector of feature weights.

While MaxEnt is a flexible and powerful frame-
work for including arbitrary features, feature engi-
neering becomes a major challenge for the MaxEnt
classifier. Xiong et al. (2006) find that boundary
words (i.e., the first and the last words in a string)
are informative for predicting reordering. Actually,

Figure 2: A recursive autoencoder for multi-word strings.
The example is adapted from (Socher et al., 2011c). Blue
and grey nodes are original and reconstructed ones, re-
spectively.

it is hard to decide which internal words in a long
composed blocks are representative and informa-
tive. Therefore, they only use boundary words as
the main features.

However, it seems not enough to just consider
boundary words and ignore all internal words when
making order predictions, especially for long sen-
tences.1 Indeed, Xiong et al. (2008) find that the
MaxEnt classifier with boundary words as features
is prone to make wrong predictions for long com-
posed blocks. As a result, they have to impose a hard
constraint to always prefer merging long composed
blocks in a monotonic way.

Therefore, it is important to consider more than
boundary words to make more accurate reordering
predictions. We need a new mechanism to achieve
this goal.

2.2 Recursive Autoencoders

2.2.1 Vector Space Representations for Words
In neural networks, a natural language word is

represented as a real-valued vector (Bengio et al.,
2003; Collobert and Weston, 2008). For example,
we can use [0.1 0.8 0.4]T to represent “female” and

1Strictly speaking, the ITG reordering model is not a phrase
reordering model since phrase pairs are only the atomic blocks.
Instead, it is defined to work on arbitrarily long strings because
composed blocks become larger and larger until the entire sen-
tence pair is generated.
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Figure 3: A neural ITG reordering model. The binary classifier makes decisions based on the vector space representa-
tions of the source and target sides of merging blocks.

[0.7 0.1 0.5]T to represent “friend”. Such vector
space representations enable natural language words
to be fed to neural networks as input.

Formally, we denote each word as a vector x ∈
Rn. These word vectors are then stacked into a word
embedding matrix L ∈ Rn×|V |, where |V | is the vo-
cabulary size. Given a sentence that is an ordered list
ofmwords, each word has an associated vocabulary
index k into the word embedding matrix L that we
use to retrieve the word’s vector space representa-
tion. This look-up operation can be seen as a simple
projection layer:

xi = Lbk ∈ Rn (6)

where bk is a binary vector which is zero in all posi-
tions except for the kth index.

In Figure 1, we assume n = 3 for simplicity and
can retrieve vectors for Chinese and English words
from two embedding matrices, respectively.

2.2.2 Vector Space Representations for
Multi-Word Strings

To apply neural networks to ITG-based transla-
tion, it is important to generate vector space repre-
sentations for atomic and composed blocks.

For example, since the vector of “female” is
[0.1 0.8 0.4]T and the vector of “friend” is
[0.7 0.1 0.5]T , what is the vector of the phrase “fe-
male friend”? If we denote “female friend” as p
(i.e., parent), “female” as c1 (i.e., the first child),
and “friend” as c2 (i.e., the second child), this can

be done by applying a function f (1):

p = f (1)(W (1)[c1; c2] + b(1)) (7)

where [c1; c2] ∈ R2n×1 is the concatenation of c1
and c2, W (1) ∈ Rn×2n is a parameter matrix, b(1) ∈
Rn×1 is a bias term, and f (1) is an element-wise ac-
tivation function such as tanh(·), which is used in
our experiments.

Note that the resulting vector for the parent is also
an n-dimensional vector, e.g, [0.6 0.9 0.2]T . The
same neural network can be recursively applied to
two strings until the vector of the entire sentence is
generated. As ITG derivation builds a binary parse
tree, the neural network can be naturally integrated
into CKY parsing.

To assess how well the learned vector p represents
its children, we can reconstruct the children in a
reconstruction layer:

[c′1; c
′
2] = f (2)(W (2)p+ b(2)) (8)

where c′1 and c′2 are the reconstructed children,W (2)

is a parameter matrix for reconstruction, b(2) is a bias
term for reconstruction, and f (2) is an element-wise
activation function, which is also set as tanh(·) in
our experiments. Similarly, the same reconstruction
neural network can be applied to each node in an
ITG parse.

These neural networks are called recursive au-
toencoders (Socher et al., 2011c). Figure 2 illus-
trates an application of a recursive autoencoder to a
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binary tree. The blue and grey nodes are the original
and reconstructed nodes, respectively. The autoen-
coder is re-used at each node of the tree. The bi-
nary tree is composed of a set of triplets in the form
of (p → c1 c2), where p is a parent vector and c1
and c2 are children vectors of p. Each child can be
either an input word vector or a multi-word vector.
Therefore, the tree in Figure 2 can be represented as
three triplets: (y1 → x1 x2), (y2 → y1 x3), and
(y3 → y2 x4).

In Figure 1, we use recursive autoencoders to gen-
erate vector space representations for Chinese and
English phrases, which form the atomic blocks for
further block merging.

2.2.3 A Neural ITG Reordering Model
Once the vectors for blocks are generated, it is

straightforward to introduce a neural ITG reorder-
ing model. As shown in Figure 3, the neural net-
work consists of an input layer and a softmax layer.
The input layer is composed of the vectors of the
first source phrase, the first target phrase, the second
source phrase, and the second target phrase. Note
that all phrases in the same language use the the
same recursive autoencoder. The softmax layer out-
puts the probabilities of the two merging orders:

P (o|X1, X2) =
exp(g(o,X1, X2))∑
o′ exp(g(o′, X1, X2))

(9)

g(o,X1, X2) = f(W oc(X1, X2) + bo) (10)

where o ∈ {straight, inverted}, W o ∈ R1×4n

is a parameter matrix, bo ∈ R is a bias term, and
c(X1, X2) ∈ R4n×1 is the concatenation of the vec-
tors of the four phrases.

3 Training

There are three sets of parameters in our recursive
autoencoders:

1. θL: word embedding matrix L for both source
and target languages (Section 2.2.1);

2. θrec: recursive autoencoder parameter matrices
W (1), W (2) and bias terms b(1), b(2) for both
source and target languages (Section 2.2.2);

3. θreo: neural ITG reordering model parameter
matrix W o and bias term bo (Section 2.2.3).

All these parameters are learned automatically from
the training data. For clarity, we will use θ to denote
all these parameters in the rest of the paper.

For training word embedding matrix, there are
two settings commonly used. In the first setting,
the word embedding matrix is initialized randomly.
This works well in a supervised scenario, in which
a neural network updates the matrix in order to op-
timize some task-specific objectives (Collobert et
al., 2011; Socher et al., 2011c). In the second set-
ting, the word embedding matrix is pre-trained us-
ing an unsupervised neural language model (Bengio
et al., 2003; Collobert and Weston, 2008) with huge
amount of unlabeled data. In this work, we prefer to
the first setting because the word embedding matri-
ces can be trained to minimize errors with respect to
reordering modeling.

There are two kinds of errors involved

1. reconstruction error: how well the learned
vector space representations represent the cor-
responding strings?

2. reordering error: how well the classifier pre-
dicts the merging order?

As described in Section 2.2.2, the input vector
c1 and c2 of a recursive autoencoder can be recon-
structed using Eq. 8 as c′1 and c′2. We use Euclidean
distance between the input and the reconstructed
vectors to measure the reconstruction error:

Erec([c1; c2]; θ) =
1

2

∥∥[c1; c2]− [c′1; c
′
2]
∥∥2
. (11)

Given a sentence, there are exponentially many
ways to obtain its vector space representation. Note
that each way corresponds to a binary tree like Fig-
ure 2. To find a binary tree with minimal reconstruc-
tion error, we follow Socher et al. (2011c) to use a
greedy algorithm. Taking Figure 2 as an example,
the greedy algorithm begins with computing the re-
construction error Erec(·) for each pair of consecu-
tive vectors, i.e., Erec([x1;x2]; θ), Erec([x2;x3]; θ)
and Erec([x3;x4]; θ). Suppose Erec([x1;x2]; θ) is
the smallest, the algorithm will replace x1 and x2

with their vector representation y1 produced by the
recursive autoencoder. Then, the algorithm evalu-
ates Erec([y1;x3]; θ) and Erec([x3;x4]; θ) and re-
peats the above replacing steps until only one vector
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remains. Socher et al. (2011c) find that the greedy
algorithm runs fast without significant loss in perfor-
mance as compared with CKY-style algorithms.

Given a training example set S = {ti =
(oi, X

1
i , X

2
i )}, the average reconstruction error on

the source side on the training set is defined as

Erec,s(S; θ) =
1

Ns

∑
i

∑
p∈T θR(ti,s)

Erec([p.c1, p.c2]; θ)

(12)
where T θR(ti, s) denotes all the intermediate nodes
on the source side in binary trees, Ns is the num-
ber of these intermediate nodes, and p.ck is the kth
child vector of p. The average reconstruction error
on the target side, denoted by Erec,t(S; θ), can be
computed in a similar way.

Therefore, the reconstruction error is defined as

Erec(S; θ) = Erec,s(S; θ) + Erec,t(S; θ). (13)

Given a training example ti = (oi, X
1
i , X

2
i ), we

assume the probability distribution dti for its label
is [1, 0] when oi = straight, and [0, 1] when oi =
inverted. Then the cross-entropy error is

Ec(ti; θ) = −
∑
o

dti(o) log
(
Pθ(o|X1, X2)

)
(14)

where o ∈ {straight, inverted}. As a result, the
reordering error is defined as

Ereo(S; θ) =
1

|S|
∑
i

Ec(ti; θ). (15)

Therefore, the joint training objective function is

J = αErec(S; θ)+(1−α)Ereo(S; θ)+R(θ) (16)

where α is a parameter used to balance the prefer-
ence between reconstruction error and reordering er-
ror, R(θ) is the regularizer and defined as 2

R(θ) =
λL
2
‖θL‖2 +

λrec
2
‖θrec‖2 +

λreo
2
‖θreo‖2 .

(17)
As Socher et al. (2011c) stated, a naive way for

lowering the reconstruction error is to make the
magnitude of the hidden layer very small, which is

2The bias terms b(1), b(2) and bo are not regularized. We do
not exclude them from the equation explicitly just for clarity.

not desirable. In order to prevent such behavior, we
normalize all the output vectors of the hidden layers
to have length 1 in the same way as (Socher et al.,
2011c). Namely we set p = p

||p|| after computing p

as in Eq. 7, and c′1 =
c′1
||c′1||

, c′2 =
c′2
||c′2||

in Eq. 8.
Following Socher et al. (2011c), we use L-BFGS

to estimate the parameters with respect to the joint
training objective. Given a set of parameters, we
construct binary trees for all the phrases using the
greedy algorithm. The derivatives for these fixed
binary trees can be computed via backpropagation
through structures (Goller and Kuchler, 1996).

4 Experiments

4.1 Data Preparation
We evaluated our system on Chinese-English trans-
lation. The training corpus contains 1.23M sen-
tence pairs with 32.1M Chinese words and 35.4M
English words. We used SRILM (Stolcke, 2002)
to train a 4-gram language model on the Xinhua
portion of the GIGAWORD corpus, which con-
tains 398.6M words. We used the NIST 2006 MT
Chinese-English dataset as the development set and
NIST 2008 dataset as the test set. The evaluation
metric is case-insensitive BLEU. Because of the ex-
pensive computational cost for training our neural
ITG reordering model, only the reordering exam-
ples extracted from about 1/5 of the entire parallel
training corpus were used to train our neural ITG re-
ordering model.

For the neural ITG reordering model, we set the
dimension of the word embedding vectors to 25 em-
pirically, which is a trade-off between computational
cost and expressive power. We use the early stop-
ping principle to determine when to stop L-BFGS.
The hyper-parameters α, λL, λrec and λreo are op-
timized by random search (Bergstra and Bengio,
2012). As preliminary experiments show that classi-
fication accuracy has a high correlation with BLEU
score, we optimize these hyper-parameters with re-
spect to classification accuracy instead of BLEU
to reduce computational cost. We randomly select
400,000 reordering examples as training set, 500 as
development set, and another 500 as test set. The
numbers of straight and inverted reordering exam-
ples in the development/test set are set to be equal
to avoid biases. We draw α uniformly from 0.05
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System NIST 2006 (tune) NIST 2008
maxent 30.40 23.75
neural 31.61* 24.82*

Table 1: BLEU scores on the NIST 2006 and 2008
datasets. *: significantly better (p < 0.01). “maxent”
denotes the baseline maximum entropy system and “neu-
ral” denotes our recursive autoencoder system.

length > = <

[1, 10] 43 121 57
[11, 20] 181 67 164
[21, 30] 170 11 152
[31, 40] 105 3 90
[41, 50] 69 1 53
[51, 119] 40 0 30

Table 2: Number of sentences that our system has a
higher (>), equal (=) or lower (<) sentence-level BLEU-
4 score on the NIST 2008 dataset.

to 0.3, and λL, λrec, λreo exponentially from 10−8

to 10−2. We use the following hyper-parameters in
our experiments: α = 0.11764, λL = 7.59 × 10−5,
λrec = 1.30× 10−5 and λreo = 3.80× 10−4. 3

The baseline system is a re-implementation of
(Xiong et al., 2006). Our system is different from the
baseline by replacing the MaxEnt reordering model
with a neural model. Both the systems have the same
pruning settings: the threshold pruning parameter is
set to 0.5 and the histogram pruning parameter to
40. For minimum-error-rate training, both systems
generate 200-best lists.

4.2 MT Evaluation

Table 1 shows the case-insensitive BLEU-4 scores
of the baseline system and our system on the devel-
opment and test sets. Our system outperforms the
baseline system by 1.21 BLEU points on the de-
velopment set and 1.07 on the test set. Both the
differences are statistically significant at p = 0.01
level (Riezler and Maxwell, 2005).

Table 2 shows the number of sentences that our
system has a higher (>), equal (=) or lower (<)
BLEU score on the NIST 2008 dataset. We find that
our system is superior to the baseline system for long

3The choice of α is very important for achieving high BLEU
scores. We tried a number of intervals and found that the clas-
sification accuracy is most stable in the interval [0.100,0.125].
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Figure 4: Comparison of reordering classification accu-
racies between the MaxEnt and neural classifiers over
varying phrase lengths. “Length” denotes the sum of the
lengths of two source phrases in a reordering example.
Our classifier (neural) outperforms the MaxEnt classi-
fier (maxent) consistently, especially for predicting long-
distance reordering.

# of examples NIST 2006 (tune) NIST 2008
100,000 30.88 23.78
200,000 30.75 23.89
400,000 30.80 24.35
800,000 31.01 24.45

6,004,441 31.61 24.82

Table 3: The effect of reordering training data size on
BLEU scores. The BLEU scores rise with the increase of
training data size. Due to the computational cost, we only
used 1/5 of the entire bilingual corpus to train our neural
reordering model.

sentences.
Figure 4 compares classification accuracies of the

neural and MaxEnt classifiers. “Length” denotes the
sum of the lengths of two source phrases in a re-
ordering example. For each length, we randomly se-
lect 200 unseen reordering examples to calculate the
classification accuracy. Our classifier outperforms
the baseline consistently, especially for long com-
posed blocks.

Xiong et al. (2008) find that the performance of
the baseline system can be improved by forbidding
inverted reordering if the phrase length exceeds a
pre-defined distortion limit. This heuristic increases
the BLEU score of the baseline system significantly
to 24.46 but is still significantly worse (p < 0.05)
than our system without the heuristic. We find that
imposing this heuristic fails to improve our system
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cluster 1 cluster 2 cluster 3 cluster 4 cluster 5
1.18 works for alternative duties these people who of the three
accessibility verify on one-day conference the reasons why on the fundamental
wheelchair tunnels from armed groups the story of how over the entire
candies transparency in chinese language works the system which through its own
cough opinion at eating habits the trend towards with the best

Table 4: Words and phrases that are close in the Euclidean space. The words and phrases in the same cluster have
similar behaviors from a reordering point of view rather than relatedness, suggesting that the vector representations
produced by the recursive autoencoders are helpful for capturing reordering regularities.

significantly. One possible reason is that there is
limited room for improvement as our system makes
fewer wrong predictions for long composed blocks.

The above results suggest that our system does go
beyond using boundary words and make a better use
of the merging blocks by using vector space repre-
sentations.

Table 3 shows the effect of training dataset size
on BLEU scores. We find that BLEU scores on both
the development and test sets rise with the increase
of the training dataset size. As the training process is
very time-consuming, only the reordering examples
extracted from 1/5 of the entire parallel training cor-
pus are used in our experiments to train our model.
Obviously, with more efficient training algorithms,
making full use of all the reordering examples ex-
tracted from the entire corpus will result in better
results. We leave this for future work.

4.3 Qualitative Analysis on Vector
Representations

Table 4 shows a number of words and phrases that
are close (measured by Euclidean distance) in the
n-dimensional space. We randomly select about
370K target side phrases used in our experiments
and cluster them into 983 clusters using k-means al-
gorithm (MacQueen, 1967). The distance between
two phrases are measured by the Euclidean distance
between their vector representations. As shown in
Table 4, cluster 1 mainly consists of nouns, clus-
ter 2 mainly contains verb/noun+preposition struc-
tures, cluster 3 contains compound phrases, cluster
4 consists of phrases which should be followed by
a clause, and cluster 5 mainly contains the begin-
ning parts of prepositional phrases that tend to be
followed by a noun phrase or word. We find that
the words and phrases in the same cluster have sim-

ilar behaviors from a reordering point of view rather
than relatedness. This indicates that the vector rep-
resentations produced by the recursive autoencoders
are helpful for capturing reordering regularities.

5 Conclusion

We have presented an ITG reordering classifier
based on recursive autoencoders. As recursive au-
toencoders are capable of producing vector space
representations for arbitrary multi-word strings in
decoding, our neural ITG system achieves an ab-
solute improvement of 1.07 BLEU points over the
baseline on the NIST 2008 Chinese-English dataset.

There are a number of interesting directions we
would like to pursue in the near future. First, re-
placing the MaxEnt classifier with a neural one re-
defines the conditions for risk-free hypothesis re-
combination. We find that the number of hypothe-
ses that can be recombined reduces in our system.
Therefore, we plan to use forest reranking (Huang,
2008) to alleviate this problem. Second, it is in-
teresting to follow Socher et al. (2013) to combine
linguistically-motivated labels with recursive neural
networks. Another problem with our system is that
the decoding speed is much slower than the baseline
system because of the computational overhead intro-
duced by RAEs. It is necessary to investigate more
efficient decoding algorithms. Finally, it is possible
to apply our method to other phrase-based and even
syntax-based systems.
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