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Abstract 

Nocuous ambiguity occurs when a lin-

guistic expression is interpreted differ-

ently by different readers in a given con-

text. We present an approach to auto-

matically identify nocuous ambiguity 

that is likely to lead to misunderstand-

ings among readers. Our model is built 

on a machine learning architecture. It 

learns from a set of heuristics each of 

which predicts a factor that may lead a 

reader to favor a particular interpretation. 

An ambiguity threshold indicates the ex-

tent to which ambiguity can be tolerated 

in the application domain. Collections of 

human judgments are used to train heu-

ristics and set ambiguity thresholds, and 

for evaluation. We report results from 

applying the methodology to coordina-

tion and anaphora ambiguity. Results 

show that the method can identify nocu-

ous ambiguity in text, and may be wid-

ened to cover further types of ambiguity. 

We discuss approaches to evaluation. 

1 Introduction 

Traditional accounts of ambiguity have generally 

assumed that each use of a linguistic expression 

has a unique intended interpretation in context, 

and attempted to develop a model to determine it 

(Nakov and Hearst, 2005; Brill and Resnik, 

1994). However, disambiguation is not always 

appropriate or even desirable (Poesio and Art-

stein, 2008). Ambiguous text may be interpreted 

differently by different readers, with no consen-

sus about which reading is the intended one. At-

tempting to assign a preferred interpretation may 

therefore be inappropriate. Misunderstandings 

among readers do occur and may have undesir-

able consequences. In requirements engineering 

processes, for example, this results in costly im-

plementation errors (Boyd et al., 2005).  

Nonetheless, most text does not lead to sig-

nificant misinterpretation. Our research aims to 

establish a model that estimates how likely an 

ambiguity is to lead to misunderstandings. Our 

previous work on nocuous ambiguity (Chantree 

et al., 2006; Willis et al., 2008) cast ambiguity 

not as a property of a text, but as a property of 

text in relation to a set of stakeholders. We drew 

on human judgments - interpretations held by a 

group of readers of a text – to establish criteria 

for judging the presence of nocuous ambiguity. 

An ambiguity is innocuous if it is read in the 

same way by different people, and nocuous oth-

erwise. The model was tested on co-ordination 

ambiguity only. 

In this paper, we implement, refine and extend 

the model. We investigate two typical ambiguity 

types arising from coordination and anaphora. 

We extend the previous work (Willis et al., 

2008) with additional heuristics, and refine the 

concept of ambiguity threshold. We experiment 

with alternative machine learning algorithms to 

find optimal ways of combining the output of the 

heuristics. Yang et al. (2010a) describes a com-

plete implementation in a prototype tool running 

on full text. Here we present our experimental 

results, to illustrate and evaluate the extended 

methodology. 

The rest of the paper is structured as follows. 

Section 2 introduces the methodology for auto-

matic detection of nocuous ambiguity. Sections 

3 and 4 provide details on how the model is ap-

plied to coordination and anaphora ambiguity. 

Experimental setup and results are reported in 

Section 5, and discussed in Section 6. Section 7 

reports on related work. Conclusions and future 

work are found in Section 8.          
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2 Methodology for Nocuous Ambiguity 

Identification 

This section describes the main ideas underpin-

ning our model of ambiguity. We distinguish 

between structural and interpretative aspects. 

The former captures the fact that text may have 

structure (i.e. syntax) which, in principle, per-

mits multiple readings. These are relatively 

straightforward to identify from the linguistic 

constructs present in the text. The latter ac-

knowledges that if text is interpreted in the same 

way by different readers, it has a low risk of be-

ing misunderstood. Modelling interpretive as-

pects requires access to human judgments about 

texts. Our approach has three elements, which 

we describe in turn: collection of human judg-

ments; heuristics that model those judgments, 

and a machine learning component to train the 

heuristics.  
 

Human judgments. We define an ambiguity as 

nocuous if it gives rise to diverging interpreta-

tions. Wasow et al. (2003) suggests that ambigu-

ity is always a product of the meaning that peo-

ple assign to language, and thus a subjective 

phenomenon. We capture individual interpreta-

tions of instances of ambiguity by surveying par-

ticipants, asking them for their interpretation. 

We use this information to decide whether, 

given some ambiguity threshold, a particular 

instance is seen as innocuous or nocuous de-

pending on the degree of dissent between judges. 

A key concept in determining when ambiguity 

is nocuous is the ambiguity threshold. Different 

application areas may need to be more or less 

tolerant of ambiguity (Poesio and Artstein, 2008). 

For instance, requirements documents describing 

safety critical systems should seek to avoid mis-

understandings between stakeholders. Other 

cases, such as cookbooks, could be less sensitive. 

Willis et al. (2008)’s general concept of ambigu-

ity threshold sought to implement a flexible tol-

erance level to nocuous ambiguity. Given an 

instance of ambiguous text, and a set of judg-

ments as to the correct interpretation, the cer-

tainty of an interpretation is the percentage of 

readers who assign that interpretation to the text. 

For example, in Table 1 below (sec. 3.1), the 

certainty of the two interpretations, HA and LA 

of expression (a) are 12/17=71% and 1/17=5.9% 

respectively. Here, an expression shows nocuous 

ambiguity if none of the possible interpretations 

have a certainty exceeding the chosen threshold. 

Later in this section, we will describe further 

experiments with alternative, finer grained ap-

proaches to setting and measuring thresholds, 

that affect the classifier’s behaviour. 
 

Heuristics. Heuristics capture factors that may 

favour specific interpretations. Each heuristic 

embodies a hypothesis, drawn from the literature, 

about a linguistic phenomenon signifying a pre-

ferred reading. Some use statistical information 

(e.g., word distribution information obtained 

from a generic corpus, the BNC
1
, using the 

Sketch Engine
2
). Others flag the presence of sur-

face features in the text, or draw on semantic or 

world knowledge extracted from linguistic re-

sources like WordNet
3
 or VerbNet

4
. 

 

Machine learning (ML). Individual heuristics 

have limited predictive power: their effective-

ness lies in their ability to operate in concert. 

Importantly, the information they encapsulate 

may be interdependent. We harness this by using 

ML techniques to combine the outputs of indi-

vidual heuristics. ML is an established method 

for recognizing complex patterns automatically, 

making intelligent decisions based on empirical 

data, and learning of complex and nonlinear re-

lations between data points. Our model uses su-

pervised learning ML techniques, deducing a 

function from training data, to classify instances 

of ambiguity into nocuous or innocuous cases. 

The classifier training data consists of pairs of 

input objects (i.e. vectors made up of heuristics 

scores) and desired outputs (i.e. the class labels 

determined by the distribution of human judg-

ments as captured by thresholds). To select an 

appropriate ML algorithm for the nocuity classi-

fier, we tested our datasets (described in later 

sections) on several algorithms in the WEKA
5
 

package (e.g., decision tree, J48, Naive Bayes, 

SVM, Logistic Regression, LogitBoost, etc.)  

To train, and validate, a nocuity classifier for 

a particular form of ambiguity, we build a data-

set of judgments, and select heuristics that model 

                                                 
1
 http://www.natcorp.ox.ac.uk/ 

2
 http://sketchengine.co.uk/ 

3
 http://wordnet.princeton.edu/ 

4
 http://verbs.colorado.edu/~mpalmer/projects/verbnet.html 

5
 http://www.cs.waikato.ac.nz/~ml/index.html 
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the information underlying the human judge-

ments about a preferred interpretation.  

We validated the approach on two forms of 

ambiguity. Sections 3 and 4 discuss how the 

methodology is applied to forms of coordination 

and anaphoric ambiguity, and evaluate the per-

formance of the final classifiers.                       

3 Automatic Identification of Nocuous 

Coordination Ambiguity 

Our previous work on nocuous ambiguity has 

focused on coordination ambiguity: a common 

kind of structural ambiguity. A coordination 

structure connects two words, phrases, or clauses 

together via a coordination conjunction (e.g., 

‘and’, ‘or’, etc) as in the following examples:  
 

(1) They support a typing system for architec-

tural components and connectors.  

(2) It might be rejected or flagged for further 

processing. 
 

     In (1), the coordination construction ‘architec-

tural components and connectors’ consists of a 

near conjunct (NC) (i.e. ‘components’), a far 

conjunct (FC) (i.e. ‘connectors’), and the at-

tached modifier (M) (i.e. ‘architectural’). This 

construction allows two bracketings correspond-

ing to high modifier attachment ([architectural 

[components and connectors]]) or low modifier 

attachement ([[architectural components] and 

connector]). Our aim is to refine Chantree et al 

(2006) and Willis et al (2008), hence our focus is 

on the two phenomena they treated: modification 

in noun phrase coordination (as in (1)) and in 

verb phrase coordination (as in (2)).   

     We implemented the heuristics described in 

the earlier work, and introduced two further ones 

(local document collocation frequency, and se-

mantic similarity). We used the Chantree et al 

(2006) dataset of human judgments, but em-

ployed the LogitBoost algorithm for implement-

ing the nocuity classifier (rather than the Logis-

tic Regression equation). The following subsec-

tions give more detail. 

3.1 Building a dataset 

Coordination instances. Our dataset was col-

lected and described by Chantree et al. (2006). It 

contains 138 coordination instances gathered 

from a set of requirement documents. Noun 

compound conjunctions account for the majority 

(85.5%) of cases (118 instances). Nearly half of 

these arose as a result of noun modifiers, while 

there are 36 cases with adjective and 18 with 

preposition modifiers. 
 

Human judgment collection. The coordination 

instances containing potential ambiguity were 

presented to a group of 17 computing profes-

sionals including academic staff or research stu-

dents. For each instance, the judges were asked 

to select one of three options: high modifier at-

tachment (HA), low modifier attachment (LA), 

or ambiguous (A). Table 1 shows the judgment 

count for two sample instances. In instance (a) in 

table 1, the certainty of HA is 12/17=71%, and 

the certainty of LA is 1/17=6%. Instance (b) was 

judged mainly to be ambiguous.  
 

 

 Judgments 
 HA LA A 

(a) security and privacy requirements 12 1 4 

(b) electrical characteristics and interface 4 4 9 

Table 1. Judgment count for the sample instances (HA=high at-

tachment; LA=low attachment; and A=Ambiguous) 
 

We set an ambiguity threshold, τ, to determine 

whether the distribution of interpretations is 

nocuous or innocuous with respect to that par-

ticular τ. If the certainty of neither interpretation, 

HA or LA, exceeds the threshold τ, we say this 

is an instance of nocuous coordination. Other-

wise it is innocuous. Here, (a) displays nocuous 

ambiguity for τ>71%. 
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Figure 1. Proportions of interpretations at different ambiguity 

thresholds in the coordination instances 

Figure 1 shows the systematic relationship be-

tween ambiguity threshold and the incidence of 

nocuous ambiguity in the dataset. Low thresh-

olds can be satisfied with a very low certainty 

scores resulting in few instances being consid-

ered nocuous. At high thresholds, almost all in-

stances are classified as nocuous unless the 

judges report a consensus interpretation.  
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3.2 Heuristics to predict Nocuity 

Each heuristic tests a factor favouring a high or 

low modifier attachment (HA or LA). We im-

plemented and extended Willis et al. (2008). 
 

Coordination matching favours HA when the 

head words of near and far conjuncts are fre-

quently found coordinated in a general corpus 

like BNC, suggesting they may form a single 

syntactic unit. 
 

Distribution similarity measures how often two 

words are found in the same contexts. It favours 

HA where it detects a strong distributional simi-

larity between the headwords of the two con-

juncts, suggesting these form a syntactic unit 

(Kilgariff 2003).  
 

Collocation frequency favours LA when the 

modifier is collocated much more frequently 

with the headword of the near conjunct than the 

far conjunct, in the document, or in the BNC. 
 

Morphology favours HA when the conjunct 

headwords share a morphological marker (suf-

fix) (Okumura and Muraki 1994).  
 

Semantic similarity favours HA when the con-

junct headwords display strong similarity in the 

taxonomic structure in WordNet
6
.  

3.3 Nocuity classification 

To train, and test, the nocuity classifier, each 

ambiguity training/test instance is represented as 

an attribute-value vector, with the values set to 

the score of a particular heuristic. The class label 

of each instance (nocuous (Y) or innocuous (N) 

at a given ambiguity threshold) is determined by 

the certainty measure as discussed earlier. We 

selected the LogitBoost algorithm for building 

the classifier, because it outperformed other can-

didates on our training data than. To determine 

whether a test instance displays nocuity or not, 

we presented its feature vector to the classifier, 

and obtained a predicted class label (Y or N). 

4 Automatic Identification of Nocuous 

Anaphora Ambiguity 

An anaphor is an expression referring to an an-

tecedent, usually a noun phrase (NP) found in 

                                                 
6
 Implemented by the NLP tool - Java WordNet Similarity Library. 

http://nlp.shef.ac.uk/result/software.html 

the preceding text. Anaphora ambiguity occurs 

when there are two or more candidate antece-

dents, as in example (3). 
 

(3) The procedure shall convert the 24 bit image to 

an 8 bit image, then display it in a dynamic window. 

 

In this case, both of the NPs, ‘the 24 bit im-

age’ and ‘an 8 bit image’, are considered poten-

tial candidate antecedents of the anaphor ‘it’. 

Anaphora ambiguity is difficult to handle due 

to contextual effects spread over several sen-

tences. Our goal is to determine whether a case 

of anaphora ambiguity is nocuous or innocuous, 

automatically, by using our methodology.  

4.1 The building of the Dataset 

Anaphora instances. We collected 200 anaph-

ora instances from requirements documents from 

RE@UTS website
7
. We are specifically con-

cerned with 3
rd

 person pronouns, which are 

widespread in requirements texts. The dataset 

contains different pronoun types. Nearly half  

the cases (48%) involve subject pronouns, al-

though pronouns also occurred in objective and 

possessive positions (15% and 33%, respec-

tively).  Pronouns in prepositional phrases (e.g., 

‘under it’) are rarer (4% - only 8 instances).  
 

Human judgment collection. The instances 

were presented to a group of 38 computing pro-

fessionals (academic staff, research students, 

software developers). For each instance, the 

judges were asked to select the antecedent from 

the list of NP candidates. Each instance was 

judged by at least 13 people. Table 2 shows an 

example of judgment counts, where 12 out of 13 

judges committed to ‘supervisors’ as the antece-

dent of ‘they’, whereas 1 chose ‘tasks’.   
 

1. Supervisors may only modify tasks they supervise to the 

agents they supervise.  

 Response 

Percent 

Response 

Count 

(a) supervisors 

(b) tasks 

92.3% 

7.7% 

12 

1 

Table 2. Judgment count for an anaphora ambiguity instance. 
 

Ambiguity threshold. Given an anaphor, the 

interpretation certainty of a particular NP candi-

date is calculated as the percentage of the judg-

ments for this NP against the total judgments for 

the instance. For example, consider the example 

in Table 2. The certainty of the NP ‘supervisors’ 

                                                 
7
 http://research.it.uts.edu.au/re/ 
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is 12/13=92.3% and the certainty of the NP 

‘tasks’ is 1/13=7.7%. Thus, at an ambiguity 

threshold of, for instance, τ = 0.8, the ambiguity 

in Table 2 is innocuous because the agreement 

between the judges exceeds the threshold. 

Figure 2 shows the relationship between am-

biguity threshold and occurrence of nocuous 

ambiguity. As in Figure 1, the number of nocu-

ous ambiguities increases with threshold τ. For 

high thresholds (e.g., τ≥0.9), more than 60% of 

instances are classified as nocuous. Below 

threshold (τ≤0.4), fewer than 8 cases are judged 

nocuous. Also, comparing Figures 1 and 2 would 

appear to suggest that, in technical documents, 

anaphora ambiguity is less likely to lead to mis-

understandings than coordination.  
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Figure 2. Proportions of interpretations at different ambiguity 

thresholds in the anaphora instances. 

4.2 Antecedent Preference Heuristics 

Drawing on the literature on anaphoric reference, 

we developed 12 heuristics of three types: re-

lated to linguistic properties of text components, 

to context and discourse information, or to sta-

tistical information drawn from standard corpora. 

Yang et al. (2010b) gives more detail. A heuris-

tic marks candidate antecedents which it favours, 

or disfavours. For instance, heuristics favour 

definite NPs as antecedents, candidate NPs 

which agree in number and syntactic role with 

the anaphor, and those which share a syntactic 

collocation pattern in the text. They also favour 

those which respect the semantic constraints 

(e.g., animacy) propagated from subcategorisa-

tion information, and reward proximity to the 

anaphor. They disfavour candidate antecedents 

that occur in prepositional phrases, and those 

occupying a syntactic role distinct from the ana-

phor. Note: not all NPs are marked by all heuris-

tics, and some heuristics are interdependent.   

4.3 Nocuous Ambiguity Identification 

Unlike coordination ambiguity, where judges 

chose for high or low modifier attachment, 

anaphora have scope over a variable set of po-

tential antecedents, depending on each particular 

instance. To accommodate this, we developed an 

antecedent classifier which assigns a weighted 

antecedent tag to each NP candidate associated 

with an instance. Tag information is used subse-

quently to predict the whether the instance dis-

plays nocuous ambiguity. 

The antecedent classifier is built using the Na-

ive Bayes algorithm within the WEKA package 

and is trained to return three classes of candidate 

antecedent: positive (Y), questionable (Q), or 

negative (N). In an innocuous case, a candidate 

NP will be classed as Y if its interpretation cer-

tainty exceeds the threshold set by τ, and tagged 

as N otherwise; in a nocuous case, it will be 

classed as N if its certainty is 0%, and classified 

as Q otherwise.  
 

1. The LPS operational scenarios represent sequences of activi-

ties performed by operations personnel as they relate to the LPS 

software. 

 Response Label 

(a) the LPS operational scenarios 

(b) sequences of activities 

(c) activities 

(d) operations personnel 

33.3% 

66.7% 

0% 

0% 

Q 

Q 

N 

N 

Table 3. The determination of antecedent label for the NP candi-

dates in a NOCUOUS ambiguity case (τ =0.8) 
 

2. Testing performed to demonstrate to the acquirer that a 

CSCI system meets its specified requirements. 

 Response 

Percent 

Class 

Label 

(a) Testing 

(b) the acquirer 

(c) a CSCI system 

0% 

16.7% 

83.3% 

N 

N 

Y 

Table 4. The determination of antecedent label for the NP candi-

dates in a INNOCUOUS ambiguity case (τ =0.8) 
 

Antecedent Class Label  

Y Q N 

τ = 0.5 181 54 623 

τ = 0.6 160 99 599 

τ = 0.7 137 149 572 

τ = 0.8 107 209 542 

τ = 0.9 77 261 520 

τ = 1.0 41 314 503 

Table 5. The distribution of three antecedent class label at different 

ambiguity thresholds 
 

Table 3 and 4 illustrate antecedent labels for 

NP antecedent candidates in a nocuous and in-

nocuous case. Candidates (a) and (b) in Table 3 

are labeled Q because their certainty falls below 

the threshold (τ = 0.8). For the same threshold, 

candidate (c) in Table 4 is tagged as Y. Table 5 
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shows the distribution of tags at certainty thresh-

olds τ ≥ 0.5 for all (858) candidate antecedents 

in our sample. 

Our intended application is a system to alert 

experts to risk of misunderstandings. This sug-

gests we should emphasise recall even at the ex-

pense of some precision (Berry et al. 2003). We 

developed two versions of the algorithm that 

determines whether an instance is nocuous or not, 

depending on the contribution made by its ante-

cedent candidates tagged Y. We relax constraints 

by introducing two concepts: a weak positive 

threshold W
Y
 and a weak negative threshold W

N
 

set at 0.5 and 0.4, respectively
8
. The rationale for 

weak thresholds is that antecedent preference 

reflects a spectrum with Y (high), Q (medium), 

and N (low). Weak positive and negative thresh-

olds act as buffers to the Q area. Antecedent NPs 

that fall in the W
Y
 or W

N
 buffer area are treated 

as possible false negative (FN) for the classifica-

tion of the label Q. An antecedent tag Y/N is la-

beled as weak positive or negative depending on 

these thresholds. The algorithm for identifying 

nocuous ambiguity is given in Figure 3. It treats 

as innocuous those cases where the antecedent 

label list contains one clear Y candidate, whose 

certainty exceeds all others by a margin.  

 

Given an anaphora ambiguity instance with multiple potential NPs, 

the antecedent classifier returns a label list, },,,{ 21 nrrrR K=
, for 

individual NPs. 
 

Parameters:  

1) W
Y
 - the threshold for the weak positive label. The label Y is 

viewed as weak positive when the positive prediction score ri < W
Y
 

2) W
N
 - the threshold for the weak negative label. The label N is 

viewed as weak negative when the negative prediction score ri < 

W
N
 

 

Procedure: 

if the label list R contains  

         (one Y, no Q, one or more N ) 

    or  

         (no Y, one Q, one or more N but not weak negative ) 

    or  
        (one Y but not weak positive, any number of Q or N)    

then 

         the ambiguity is INNOCUOUS 

else 

         the ambiguity is NOCUOUS          

Figure 3. The algorithm for nocuous ambiguity identification 

5 Experiments and Results 

In all experiments, the performance was evalu-

ated using 5-fold cross-validation, using  stan-

                                                 
8
 Weak positive and negative thresholds are set experimentally. 

dard measures of Precision (P), Recall (R), F-

measure (F), and Accuracy. We use two naive 

baselines: BL-1 assumes that all ambiguity in-

stances are innocuous; BL-2 assumes that they 

are all nocuous. For fair comparison against the 

baselines, for both forms of ambiguity, we only 

report the performance of our ML-based models 

when the incidence of nocuous ambiguities falls 

between 10% ~ 90% of the set (see Figures 1 

and 2). We first report our findings for the iden-

tification of nocuous coordination ambiguities 

and then discuss the effectiveness of our model 

in distinguishing possible nocuous ambiguities 

from a set of ambiguity instances.    

5.1 Nocuous Coordination Ambiguity Iden-

tification 

Willis et al (2008) demonstrated the ability of 

their approach to adapt to different thresholds by 

plotting results against the two naïve base lines. 

Since we extended and refined their approach 

described we plot our experimental results (CM-

1), for comparison, using the same measures, 

against their evaluation data (CM-2), in Figure 4.   
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Figure 4. The performance comparison of the ML-based models, 

CM-1 and CM-2, to the two baseline models, BL-1 and BL-2, in 

nocuous coordination ambiguity identification.  
 

Our CM-1 model performed well with an ac-

curacy of above 75% on average at all ambiguity 

threshold levels. As expected, at very high and 

very low thresholds, we did not improve on the 

naive baselines (which have perfect recall and 

hence high accuracy). The CM-1 model dis-

played its advantage when the ambiguity thresh-

old fell in the range between 0.45 and 0.75 (a 

significantly wider range than reported for CM-2 

Willis et al (2008)). CM-1 maximum improve-

ment was achieved around the 58% crossover 

point where the two naïve baselines intersect and  

our model achieved around 21% increased accu-
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racy. This suggests that the combined heuristics 

do have strong capability of distinguishing 

nocuous from innocuous ambiguity at the weak-

est region of the baseline models. 

Figure 4 also shows that, the CM-1 model 

benefitted from the extended heuristics and the 

LogitBoost algorithm with an increased accuracy 

of around 5.54% on average compared with CM-

2.  This suggests that local context information 

and semantic relationships between coordinating 

conjuncts provide useful clues for the identifica-

tion of nocuous ambiguity. Furthermore, the 

LogitBoost algorithm is more suitable for deal-

ing with a numeric-attribute feature vector than 

the previous Logistic Regression algorithm.  

5.2 Nocuous Anaphora Ambiguity Identifi-

cation 

We report on two implementations: one with 

weak thresholds (AM-1) and one without (AM-

2). We compare both approaches using the base-

lines, BL-1 and BL-2 (in Figure 5). It shows that 

AM-1 and AM-2 achieve consistent improve-

ments on baseline accuracy at high thresholds 

(τ≥0.75). Here also, the improvement maximises 

around the 83% threshold point where the two 

baselines intersect. However, the ML-based 

models perform worse than BL-1 at the lower 

thresholds (0.5≤τ≤0.7). One possible explanation 

is that, at low thresholds, performance is affected 

by lack of data for training of the Q class label, 

an important indicator for nocuous ambiguity 

(see Table 5). This is also consistent with the 

ML models performing well at higher thresh-

olds, when enough nocuous instances are avail-

able for training. 
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Figure 5. The performance comparison of the ML-based models, 

AM-1 and AM-2, to the two baseline models, BL-1 and BL-2, in 

nocuous anaphora ambiguity identification.  
     

 Figure 5 further shows that the model with 

weak thresholds (AM-1) did not perform as well 

as the model without weak thresholds (AM-2) on 

accuracy. Although both models perform much 

better than the baselines on precision (more ex-

perimental results are reported in Yang et al. 

(2010b)), the actual precisions for both models 

are relatively low, ranging from 0.3 ~ 0.6 at dif-

ferent thresholds. When the AM-1 model at-

tempts to discover more nocuous instances using 

weak thresholds, it also introduces more false 

positives (innocuous instances incorrectly 

classed as nocuous). The side-effect of introduc-

ing false positives for AM-1 is to lower accu-

racy. However, the AM-1 model outperforms 

both AM-2 and BL-2 models on F-measure 

(Figure 6), with an average increase of 5.2 and 

3.4 percentage points respectively. This reveals 

that relaxing sensitivity to the ambiguity thresh-

old helps catch more instances of nocuous 

anaphora ambiguity.             
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Figure 6. The performance comparison of the ML-based models, 

AM-1 and AM-2, to the baseline model BL-2 (naïve nocuous) 

6 Discussions 

We presented judges with sentences containing 

ambiguities without any surrounding context, 

even though contextual information (e.g., dis-

course focus) clearly contributes to interpreta-

tion. This is a weakness in our data collection 

technique. Besides contextual information, van 

Deemter’s Principle of Idiosyncratic Interpreta-

tion (1998) suggests that some factors, including 

the reader’s degree of language competence, can 

affect perceptions of ambiguity. Similarly, fa-

miliarity with a domain, including tacit specialist 

information (Polanyi, 1966), and the extent to 

which this is shared by a group, will have an ef-

fect on the extent to which stakeholders arrive at 

diverging interpretations. 

In our case, we extracted instances from re-

quirements documents covering several techni-
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cal domains. Judgements are sensitive to the 

backgrounds of the participants, and the extent 

to which stakeholder groups share such a back-

ground. Also, we used several large, generic NL 

resources, including the BNC and WordNet. The 

performance of several heuristics would change 

if they drew on domain specific resources. Dif-

ferent interpretations may be compatible, and so 

not necessarily contribute to misunderstanding.  

Finally, we used different machine learning 

algorithms to tackle different types of ambiguity 

instances: LogitBoost for coordination ambigu-

ity and Naive Bayes for anaphora ambiguity. 

The main reason is that coordination heuristics 

returned numeric values, whereas the anaphora 

heuristics were Boolean. Our method assumes 

tailoring of the ML algorithm to the choice of 

heuristic. These limitations indicate that the 

methodology has a high degree of flexibility, but 

also that it has several interdependent compo-

nents and background assumptions that have to 

be managed if an application is to be developed. 

7 Related Work 

Many researchers have remarked on the fact that 

some ambiguities are more likely than others to 

lead to misunderstandings, and suggested classi-

fying them accordingly. Poesio (1996) discussed 

cases where multiple readings are intended to 

coexist, and distinguished between language in-

herent and human disambiguation factors from a 

philosophical perspective. His notion of ‘per-

ceived ambiguity’ suggests that human percep-

tions are what actually cause an ambiguity to be 

misunderstood. Van Deemter’s (2004) ‘vicious 

ambiguity’ refers to an ambiguity that has no 

single, strongly preferred interpretation. He pro-

posed quantifying ‘viciousness’ using probabili-

ties taken from corpus data. Van Rooy (2004) 

defined a notion of ‘true ambiguity’: a sentence 

is truly ambiguous only if there are at least two 

interpretations that are optimally relevant. These 

last two approaches rely on probability analysis 

of language usage, and not directly on human 

perception, which we believe to be the key to 

evaluating ambiguity. Our work differs in that it 

takes into account the distribution of interpreta-

tions arrived at by a group of human judges en-

gaged with a text. Our model treats ambiguity 

not as a property of a linguistic construct or a 

text, or a relation between a text and the percep-

tions of a single reader, but seeks to understand 

the mechanisms that lead to misunderstandings 

between people in a group or process. 

    Poesio et al (2006) have pointed out that dis-

ambiguation is not always necessary; for in-

stance, in some complex anaphora cases, the fi-

nal interpretation may not be fully specified, but 

only ‘good enough’. Our work does not attempt 

disambiguation. It seeks to highlight the risk of 

multiple interpretations (whatever those are).   

8 Conclusions and Future Work 

We have presented a general methodology for 

automatically identifying nocuous ambiguity 

(i.e. cases of ambiguity where there is a risk that 

people will hold different interpretations) rela-

tive to some tolerance level set for such a risk. 

The methodology has been implemented in a 

ML based architecture, which combines a num-

ber of heuristics each highlighting factors which 

may affect how humans interpret ambiguous 

constructs. We have validated the methodology 

by identifying instances of nocuous ambiguity in 

coordination and anaphoric constructs. Human 

judgments were collected in a dataset used for 

training the ML algorithm and evaluation. Re-

sults are encouraging, showing an improvement 

of approximately 21% on accuracy for coordina-

tion ambiguity and about 3.4% on F-measure for 

anaphora ambiguity compared with naive base-

lines at different ambiguity threshold levels. We 

showed, by comparison with results reported in 

Willis et al (2008) that the methodology can be 

fine tuned, and extended to other ambiguity 

types, by including different heuristics.  

Our method can highlight the risk of different 

interpretations arising: this is not a task a single 

human could perform, as readers typically have 

access only to their own interpretation and are 

not routinely aware that others hold a different 

one. Nonetheless, our approach has limitations, 

particularly around data collection, and for 

anaphora ambiguity at low thresholds. We en-

visage further work on the implementation of 

ambiguity tolerance thresholds 

Several interesting issues remain to be inves-

tigated to improve our system’s performance and 

validate its use in practice. We need to explore 

how to include different and complex ambiguity 

types (e.g., PP attachment and quantifier scop-
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ing), and investigate whether these are equally 

amenable to a heuristics based approach.  
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